In this research,the thermal performance of a single U-tube vertical ground heat exchanger is evaluated numerically as a function of the most influential flow parameters,namely,the soil porosity,volumetric heat capaci...In this research,the thermal performance of a single U-tube vertical ground heat exchanger is evaluated numerically as a function of the most influential flow parameters,namely,the soil porosity,volumetric heat capacity,and thermal conductivity of the backfill material,inlet volume flow rate,and inlet fluid temperature.The results are discussed in terms of the variations of the heat exchange rate,the effective thermal resistance,and the effectiveness of the ground heat exchanger.They show that the inlet volume flow rate,inlet fluid temperature,and backfill material thermal conductivity have significant effects on the thermal performance of the ground heat exchanger,such that by decreasing the inlet volume flow rate and increasing the backfill material thermal conductivity and inlet fluid temperature,the outlet fluid temperature decreases considerably.On the contrary,the soil porosity and backfill material volumetric heat capacity have negligible effects on the studied ground heat exchanger’s thermal performance.The lowest inlet fluid temperature reaches a the maximum effective thermal resistance of borehole and soil,and consequently the minimum heat transfer rate and effectiveness.Also,multilinear regression analyses are performed to determine the most feasible models able to predict the thermal properties of the single U-tube ground heat exchanger.展开更多
Based on experimental data, the energy storage performances of floor radiant heating system were investigated. The decrease of indoor air temperature after the stopping of floor heating was compared with that of fan-c...Based on experimental data, the energy storage performances of floor radiant heating system were investigated. The decrease of indoor air temperature after the stopping of floor heating was compared with that of fan-coil heating system. The increase of indoor air temperature after the stopping of floor cooling system was analyzed. The results show that the floor heating system has good thermal storage performance, which can be used to a night-running model to obtain the energy-saving benefits efficient and economic running cost, and still can be used for “shifting peak load to off-peak” macroscopically.展开更多
The free-piston engine generator(FPEG)is regarded as the next generation of energy conversion system which may replace traditional engines in the future.The effect of key operational parameters like excess air ratio o...The free-piston engine generator(FPEG)is regarded as the next generation of energy conversion system which may replace traditional engines in the future.The effect of key operational parameters like excess air ratio of input mixture and ignition position on the engine performance of a dual-cylinder FPEG was investigated,and their sensitivity was analyzed in this paper.The operating compression ratio of the system is susceptible to changes in excess air ratio and ignition position.At the same time,it decreases from 15.8 to 6.6 when excess air ratio increases from 0.85 to 1.15,but it increases from 6.1 to 13.3 as ignition position increases from 15 mm to 20 mm.The operating frequency and indicated power are more sensitive to changes in excess air ratio than ignition position.But it is the opposite for the indicated thermal efficiency and friction loss.Excess air ratio and ignition position have a quite similar influence on heat transfer.Therefore,from the perspective of system operation and performance,it is preferable to keep excess air coefficient slightly below 1.0.In contrast,when selecting ignition position,it is of great importance to comprehensively consider the risk of structural damage caused by the increase in the compression ratio and in-cylinder gas pressure.展开更多
Numerous innovative heat recovery-to-power technologies have been resourcefully and technologically exploited to bridge the growing gap between energy needs and its sustainable and affordable supply.Among them,the pro...Numerous innovative heat recovery-to-power technologies have been resourcefully and technologically exploited to bridge the growing gap between energy needs and its sustainable and affordable supply.Among them,the proposed trilateral-cycle(TLC) power system exhibits high thermodynamic efficiency during heat recovery-to-power from low-to-medium temperature heat sources.The TLCs are proposed and analysed using n-pentane as working fluid for waste heat recovery-to-power generation from low-grade heat source to evaluate the thermodynamic efficiency of the cycles.Four different single stage TLC configurations with distinct working principles are modelled thermodynamically using engineering equation solver.Based on the thermodynamic framework,thermodynamic performance simulation and efficiency analysis of the cycles as well as the exergy efficiencies of the heating and condensing processes are carried out and compared in their efficiency.The results show that the simple TLC,recuperated TLC,reheat TLC and regenerative TLC operating at subcritical conditions with cycle high temperature of 473 K can attain thermal efficiencies of 21.97%,23.91%,22.07% and 22.9%,respectively.The recuperated TLC attains the highest thermodynamic efficiency at the cycle high temperature because of its lowest exergy destruction rates in the heat exchanger and condenser.The efficiency analysis carried out would assist in guiding thermodynamic process development and thermal integration of the proposed cycles.展开更多
文摘In this research,the thermal performance of a single U-tube vertical ground heat exchanger is evaluated numerically as a function of the most influential flow parameters,namely,the soil porosity,volumetric heat capacity,and thermal conductivity of the backfill material,inlet volume flow rate,and inlet fluid temperature.The results are discussed in terms of the variations of the heat exchange rate,the effective thermal resistance,and the effectiveness of the ground heat exchanger.They show that the inlet volume flow rate,inlet fluid temperature,and backfill material thermal conductivity have significant effects on the thermal performance of the ground heat exchanger,such that by decreasing the inlet volume flow rate and increasing the backfill material thermal conductivity and inlet fluid temperature,the outlet fluid temperature decreases considerably.On the contrary,the soil porosity and backfill material volumetric heat capacity have negligible effects on the studied ground heat exchanger’s thermal performance.The lowest inlet fluid temperature reaches a the maximum effective thermal resistance of borehole and soil,and consequently the minimum heat transfer rate and effectiveness.Also,multilinear regression analyses are performed to determine the most feasible models able to predict the thermal properties of the single U-tube ground heat exchanger.
文摘Based on experimental data, the energy storage performances of floor radiant heating system were investigated. The decrease of indoor air temperature after the stopping of floor heating was compared with that of fan-coil heating system. The increase of indoor air temperature after the stopping of floor cooling system was analyzed. The results show that the floor heating system has good thermal storage performance, which can be used to a night-running model to obtain the energy-saving benefits efficient and economic running cost, and still can be used for “shifting peak load to off-peak” macroscopically.
基金Projects(51675043,52005038)supported by the National Natural Science Foundation of China。
文摘The free-piston engine generator(FPEG)is regarded as the next generation of energy conversion system which may replace traditional engines in the future.The effect of key operational parameters like excess air ratio of input mixture and ignition position on the engine performance of a dual-cylinder FPEG was investigated,and their sensitivity was analyzed in this paper.The operating compression ratio of the system is susceptible to changes in excess air ratio and ignition position.At the same time,it decreases from 15.8 to 6.6 when excess air ratio increases from 0.85 to 1.15,but it increases from 6.1 to 13.3 as ignition position increases from 15 mm to 20 mm.The operating frequency and indicated power are more sensitive to changes in excess air ratio than ignition position.But it is the opposite for the indicated thermal efficiency and friction loss.Excess air ratio and ignition position have a quite similar influence on heat transfer.Therefore,from the perspective of system operation and performance,it is preferable to keep excess air coefficient slightly below 1.0.In contrast,when selecting ignition position,it is of great importance to comprehensively consider the risk of structural damage caused by the increase in the compression ratio and in-cylinder gas pressure.
基金The University of Ilorin,Nigeria financially supported this research through scholarship grant from Tertiary Education Trust Fund
文摘Numerous innovative heat recovery-to-power technologies have been resourcefully and technologically exploited to bridge the growing gap between energy needs and its sustainable and affordable supply.Among them,the proposed trilateral-cycle(TLC) power system exhibits high thermodynamic efficiency during heat recovery-to-power from low-to-medium temperature heat sources.The TLCs are proposed and analysed using n-pentane as working fluid for waste heat recovery-to-power generation from low-grade heat source to evaluate the thermodynamic efficiency of the cycles.Four different single stage TLC configurations with distinct working principles are modelled thermodynamically using engineering equation solver.Based on the thermodynamic framework,thermodynamic performance simulation and efficiency analysis of the cycles as well as the exergy efficiencies of the heating and condensing processes are carried out and compared in their efficiency.The results show that the simple TLC,recuperated TLC,reheat TLC and regenerative TLC operating at subcritical conditions with cycle high temperature of 473 K can attain thermal efficiencies of 21.97%,23.91%,22.07% and 22.9%,respectively.The recuperated TLC attains the highest thermodynamic efficiency at the cycle high temperature because of its lowest exergy destruction rates in the heat exchanger and condenser.The efficiency analysis carried out would assist in guiding thermodynamic process development and thermal integration of the proposed cycles.