期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
晶须取向对SiC_w/6061Al复合材料热压缩变形行为的影响 被引量:3
1
作者 李爱滨 耿林 翟瑾番 《材料工程》 EI CAS CSCD 北大核心 2003年第4期14-16,43,共4页
采用SEM和Magiscan-2A图像分析系统研究了晶须取向对SiCw/6061Al复合材料在300℃压缩变形行为的影响。结果表明:晶须取向影响着晶须折断程度和转动角度;随着晶须取向角的增加,晶须转动和折断行为所导致的软化效果下降。同时晶须取向也... 采用SEM和Magiscan-2A图像分析系统研究了晶须取向对SiCw/6061Al复合材料在300℃压缩变形行为的影响。结果表明:晶须取向影响着晶须折断程度和转动角度;随着晶须取向角的增加,晶须转动和折断行为所导致的软化效果下降。同时晶须取向也影响复合材料的热压缩应力-应变曲线的形状。在热压缩变形过程中,晶须取向角为0°和30°的复合材料表现出明显应变软化现象,晶须取向角为45°的复合材料无明显软化现象。晶须取向角为90℃的复合材料表现出应变硬化现象。 展开更多
关键词 热压缩变形行为 SICW/6061AL复合材料 晶须取向 碳化硅 铝基复合材料
在线阅读 下载PDF
晶须增强铝基复合材料的热压缩变形行为研究 被引量:3
2
作者 刘瑞锋 李爱滨 耿林 《材料科学与工艺》 EI CAS CSCD 北大核心 2005年第5期481-483,487,共4页
采用试验和数值模拟相结合的方法研究了纵向、横向和倾斜分布的晶须增强铝基复合材料热压缩变形行为.研究表明:S iCw/6061A l复合材料300℃压缩的应力-应变行为与晶须取向角密切相关;在热变形过程中,纵向分布晶须折断严重,导致复合材料... 采用试验和数值模拟相结合的方法研究了纵向、横向和倾斜分布的晶须增强铝基复合材料热压缩变形行为.研究表明:S iCw/6061A l复合材料300℃压缩的应力-应变行为与晶须取向角密切相关;在热变形过程中,纵向分布晶须折断严重,导致复合材料表现为应变软化行为;而倾斜于压缩方向30o的晶须折断和转动明显,引起相应复合材料应变软化;横向分布晶须没有转动而折断程度很小,使复合材料呈现出加工硬化行为. 展开更多
关键词 金属基复合材料 有限元分析 晶须取向 热压缩变形行为
在线阅读 下载PDF
Modeling of metadynamic recrystallization kinetics after hot deformation of low-alloy steel Q345B 被引量:3
3
作者 马博 彭艳 +1 位作者 刘云飞 贾斌 《Journal of Central South University》 SCIE EI CAS 2010年第5期911-917,共7页
Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic re... Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic recrystallization behavior of low-alloy steel Q345B during hot compression deformation was investigated in the temperature range of 1 000-1 100℃,the strain rate range of 0.01-0.10 s -1 and the interpass time range of 0.5-50 s on a Gleeble-3500 thermo-simulation machine.The results show that metadynamic recrystallization during the interpass time can be observed.As the deformation temperature and strain rate increase,softening caused by metadynamic recrystallization is obvious.According to the data of thermo-simulation,the metadynamic recrystallization activation energy is obtained to be Qmd=100.674 kJ/mol and metadynamic recrystallization kinetics model is set up.Finally,the error analysis of metadynamic recrystallization kinetics model proves that the model has high accuracy(correlation coefficient R=0.988 6). 展开更多
关键词 low-alloy steel kinetics model hot deformation metadynamic recrystallization activation energy
在线阅读 下载PDF
Hot compressive deformation behavior and constitutive relationship of Al-Zn-Mg-Zr alloy with trace amounts of Sc 被引量:2
4
作者 李波 潘清林 +2 位作者 李晨 张志野 尹志民 《Journal of Central South University》 SCIE EI CAS 2013年第11期2939-2946,共8页
Abstract: The hot deformation behaviors of AI-Zn-Mg-Sc-Zr alloy were investigated in a temperature range of 340-500℃ and a strain rate range of 0.001-10 s 1 using uniaxial compression test on Gleeble-1500 thermal si... Abstract: The hot deformation behaviors of AI-Zn-Mg-Sc-Zr alloy were investigated in a temperature range of 340-500℃ and a strain rate range of 0.001-10 s 1 using uniaxial compression test on Gleeble-1500 thermal simulation machine. The results show that the flow stress increases with increasing strain and tends to be constant after a peak value. The flow stress increases with increasing strain rate and decreases with increasing deformation temperature. The phenomenon of dynamic recovery and dynamic recrystallization can be observed by microstructural evolutions. Based on the hyperbolic Arrhenius-type equation, the true stress-true strain data from the tests were employed to establish the constitutive equation considering the effect of the true strain on material constants (α, β, Q, n and A), which reveals the dependence of the flow stress on strain, strain rate and deformation temperature. The predicted stress-strain curves are in good agreement with experimental results, which confirms that the developed constitutive equations are suitable to research the hot deformation behaviors of Al-Zn-Mg-Sc-Zr alloy. 展开更多
关键词 Al-Zn-Mg-Sc-Zr alloy hot deformation behavior flow stress constitutive equation
在线阅读 下载PDF
Hot deformation behavior of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy with acicular microstructure 被引量:2
5
作者 刘高峰 张尚洲 陈礼清 《Journal of Central South University》 SCIE EI CAS 2011年第2期296-302,共7页
The characteristics of hot deformation of an α+β titanium alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si with acicular microstructure were studied using isothermal hot compressive tests in a strain rate range of 0.01-10 s^-1 at ... The characteristics of hot deformation of an α+β titanium alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si with acicular microstructure were studied using isothermal hot compressive tests in a strain rate range of 0.01-10 s^-1 at 860-1 100 ℃. The true stress-tree strain curves of alloy hot-compressed in the α+β region exhibit a peak stress followed by continuous flow softening; whereas in the β region, the flow stress attains a steady-state regime. At a strain rate of 10 s^-1 and in a wide temperature range, the alloy exhibits plastic flow instability. According to the kinetic rate equation, the apparent activation energies are estimated to be about 633 kJ/mol in the α+β region and 281 kJ/mol in the β region, respectively. The processing maps show a domain of the globularization process of a colony structure and α dynamic recrystallization in the temperature range of 860-960 ℃ with a peak efficiency of about 60%, and a domain of β dynamic recrystallization in the β region with a peak efficiency of 80%. 展开更多
关键词 titanium alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si hot compression flow behavior MICROSTRUCTURE
在线阅读 下载PDF
Characterization of hot deformation behavior of Al-Zn-Mg-Mn-Zr alloy during compression at elevated temperature 被引量:4
6
作者 YAN Jie 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期515-520,共6页
The hot deformation behavior of Al-6.2Zn-0.70Mg-0.30Mn-0.17 Zr alloy and its microstructural evolution were investigated by isothermal compression test in the deformation temperature range between 623 and 773 K and th... The hot deformation behavior of Al-6.2Zn-0.70Mg-0.30Mn-0.17 Zr alloy and its microstructural evolution were investigated by isothermal compression test in the deformation temperature range between 623 and 773 K and the strain rate range between 0.01 and 20 s^(-1).The results show that the flow stress decreased with decreasing strain rate and increasing deformation temperature.At low deformation temperature(≤673 K) and high strain rate(≥1 s^(-1)),the main flow softening was caused by dynamic recovery;conversely,at higher deformation temperature and lower strain rate,the main flow softening was caused by dynamic recrystallization.Moreover,the slipping mechanism transformed from dislocation glide to grain boundary sliding with increasing the deformation temperature and decreasing the strain rate.According to TEM observation,numerous Al_3Zr particles precipitated in matrix,which could effectively inhibit the dynamic recrystallization of the alloy.Based on the processing map,the optimum processing conditions for experimental alloy were in deformation temperature range from 730 K to 773 K and strain rate range from 0.033 s^(-1) to 0.18 s^(-1) with the maximum efficiency of 39%. 展开更多
关键词 aluminum alloy hot deformation TEM dynamic recrystallization processing map
在线阅读 下载PDF
Hot-compression behavior of Al alloy 5182
7
作者 唐建国 黄星星 张新明 《Journal of Central South University》 SCIE EI CAS 2012年第8期2073-2080,共8页
Hot-compression of aluminum alloy 5182 was carried out on a Gleeble- 1500 thermo-simulator at deformation temperature ranging from 350 ℃ to 500 ℃ and at strain rate from 0.01 s^-1 to 10 s^-1 with strain range from 0... Hot-compression of aluminum alloy 5182 was carried out on a Gleeble- 1500 thermo-simulator at deformation temperature ranging from 350 ℃ to 500 ℃ and at strain rate from 0.01 s^-1 to 10 s^-1 with strain range from 0.7 to 1.9. The microstructures and macro-textures evolution under different conditions were investigated by polarized optical microscopy and X-ray diffraction analysis, respectively. The basic trend is that the hot-compression stress increases with the decrease of temperature and increase of strain rate, which is revealed and elucidated in terms of Zener-Hollomon parameter in the hyperbolic sine equation with the hot-deformation activation energy of 143.5 kJ/mol. An empirical constitutive equation is proposed to predict the hot-deformation behavior under different conditions. As deformation temperature increases up to 400 ℃, at strain rate over 1 s^-1, dynamic recrystallization (DRX) occurs. Cube orientation { 100} (001) is detected in the recrystallized sample after hot-compression. 展开更多
关键词 aluminum alloy 5182 hot-compression TEXTURE MICROSTRUCTURE
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部