Thermogravimetric study of medical transfusion tube (MTT) waste containing polyvinyl chloride (PVC) was carried out using the thermogravimetric analyser (TGA) with N2, at different heating rates of 5, 10, 20, 30...Thermogravimetric study of medical transfusion tube (MTT) waste containing polyvinyl chloride (PVC) was carried out using the thermogravimetric analyser (TGA) with N2, at different heating rates of 5, 10, 20, 30, 50 ℃/min. The purpose is to obtain pyrolysis characteristics and kinetic parameters of medical waste. The experimental results indicate that the pyrolysis behavior of the MTT sample is in agreement with its main ingredient of PVC, appearing two stair stepping stages. The influence of the additives in MTT on pyrolysis behavior was also revealed, which could improve MTT pyrolysis at lower temperature in the first stage, and cause obvious unsmoothness and asymmetry of the second DTG peak. Four n-order kinetic models of Coats-Redfern, Ozawa, Kissinger and Freeman-carroll were used to get the kinetic parameters. Furthermore, a novel "two-step four-reaction model" was established to simulate the whole continuous process. The different methods and the kinetic parameters thus obtained were discussed and compared with each other in literatures. The reasons of deviation among kinetic values were tried to be elucidated. The new established model could more satisfactorily describe the pyrolysis process of MTT, being more mechanistic and conveniently serving for the engineering.展开更多
Monodispersed MgO microspheres were successfully synthesized by a simple solvothermal method using PEG-400 as solvent. The samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Th...Monodispersed MgO microspheres were successfully synthesized by a simple solvothermal method using PEG-400 as solvent. The samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The results reveal that the precusor was monoclinic Mg5(CO3)4(OH)2·4H2O and composed of nanosheets with the thickness of about 250 nm. By calcining the precusor at 500 °C for 5 min, cubic MgO with similar morphology was obtained. According to the SEM images, it is found that the volume ratio of PEG-400 to deionized water is considered as a crucial factor in the evolution of the morphology. Based on the SEM images obtained under different experimental conditions, a possible growth mechanism which involves self-assembly process was proposed. The thermal decomposition process of MgO precusor was studied by thermogravimetry-differential thermogravimetry(TG-DTG) at different heating rates in air. Thermal analysis kinetics results show that the most probale mechanism models of MgO precusor are An and D3, respectively. In addition, isothermal prediction was studied to quantitatively characterize the thermal decomposition process.展开更多
基金Project(50378062) supported by the National Natural Science Foundation of ChinaProject(09JCYBJC08100) supported by the Natural Science Foundation of Tianjin City,China
文摘Thermogravimetric study of medical transfusion tube (MTT) waste containing polyvinyl chloride (PVC) was carried out using the thermogravimetric analyser (TGA) with N2, at different heating rates of 5, 10, 20, 30, 50 ℃/min. The purpose is to obtain pyrolysis characteristics and kinetic parameters of medical waste. The experimental results indicate that the pyrolysis behavior of the MTT sample is in agreement with its main ingredient of PVC, appearing two stair stepping stages. The influence of the additives in MTT on pyrolysis behavior was also revealed, which could improve MTT pyrolysis at lower temperature in the first stage, and cause obvious unsmoothness and asymmetry of the second DTG peak. Four n-order kinetic models of Coats-Redfern, Ozawa, Kissinger and Freeman-carroll were used to get the kinetic parameters. Furthermore, a novel "two-step four-reaction model" was established to simulate the whole continuous process. The different methods and the kinetic parameters thus obtained were discussed and compared with each other in literatures. The reasons of deviation among kinetic values were tried to be elucidated. The new established model could more satisfactorily describe the pyrolysis process of MTT, being more mechanistic and conveniently serving for the engineering.
基金Project(CL11034)supported by the Training Program of Innovation and Entrepreneurship for Undergraduates of ChinaProject(CSUZC2013033)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,ChinaProject(201210533003)supported by National Training Programs of Innovation and Entrepreneurship for Undergraduates,China
文摘Monodispersed MgO microspheres were successfully synthesized by a simple solvothermal method using PEG-400 as solvent. The samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The results reveal that the precusor was monoclinic Mg5(CO3)4(OH)2·4H2O and composed of nanosheets with the thickness of about 250 nm. By calcining the precusor at 500 °C for 5 min, cubic MgO with similar morphology was obtained. According to the SEM images, it is found that the volume ratio of PEG-400 to deionized water is considered as a crucial factor in the evolution of the morphology. Based on the SEM images obtained under different experimental conditions, a possible growth mechanism which involves self-assembly process was proposed. The thermal decomposition process of MgO precusor was studied by thermogravimetry-differential thermogravimetry(TG-DTG) at different heating rates in air. Thermal analysis kinetics results show that the most probale mechanism models of MgO precusor are An and D3, respectively. In addition, isothermal prediction was studied to quantitatively characterize the thermal decomposition process.