The nano particles have demonstrated great potential to improve the heat transfer characteristics of heat transfer fluids.Possible parameters responsible for this increase were studied. The heat transfer profile in th...The nano particles have demonstrated great potential to improve the heat transfer characteristics of heat transfer fluids.Possible parameters responsible for this increase were studied. The heat transfer profile in the nanolayer region was combined with other parameters such as volume fraction, particle radius thermal conductivity of the fluid, particle and nanolayer, to formulate a thermal conductivity model. Results predicting the thermal conductivity of nanofluids using the model were compared with experimental results as well as studies by other researchers. The comparison of the results obtained for the Cu O/water and Ti O2/water nanofluids studied shows that the correlation proposed is in closest proximity in predicting the experimental results for the thermal conductivity of a nanofluid. Also, a parametric study was performed to understand how a number of factors affect the thermal conductivity of nanofluids using the developed correlation.展开更多
In order to increase the efficiency of solar collector, a methodology is proposed based on the analysis of its influencing factors, such as thermal conductivity of filled layer, structure forms of filled layer and hea...In order to increase the efficiency of solar collector, a methodology is proposed based on the analysis of its influencing factors, such as thermal conductivity of filled layer, structure forms of filled layer and heat loss coefficient. The results of analysis show that the heat transfer between pipes in evacuated tube is one of the most important factors, which can lead to the decrease of the outlet temperature of working fluid. In order to eliminate the negative influence of the heat transfer between pipes, the hollow filled-type evacuated tube with U-tube(HUFET) was developed, and the heat transfer characteristics of HUFET were analyzed by theoretical and experimental studies. The results show that the thermal resistances decrease with the increase of the thermal conductivity of filled layer. When the thermal conductivity is over 10 W/(m·K), the change of thermal resistances is very little.Furthermore, the larger the thermal conductivity of filled layer, the less the rate of the energy transfer between the two pipes to the total energy transfer, which is between the absorber tube and the working fluid. There is a little difference between the efficiencies of HUFET and UFET, with the efficiency of HUFET 2.4% higher than that of UFET. Meanwhile, the validation of the model developed was confirmed by the experiment.展开更多
A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface...A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface. It is found that the increased conductivities in both doped and undoped regions help reduce the temperature difference across the wafer surface. However, the doped layer conductivity has little effect on the overall temperature distribution and difference. The temperature level and difference on the top surface drop suddenly when absorption coefficient changes from 104 to 103 m-1. When the absorption coefficient is less or equal to 103 m-1, the temperature level and difference do not change much. The emissivity has the dominant effect on the top surface temperature level and difference. Higher surface emissivity can easily increase the temperature level of the wafer surface. After using the improved property data, the overall temperature level reduces by about 200 K from the basis case. The results will help improve the current understanding of the energy transport in the rapid thermal processing and the wafer temperature monitor and control level.展开更多
文摘The nano particles have demonstrated great potential to improve the heat transfer characteristics of heat transfer fluids.Possible parameters responsible for this increase were studied. The heat transfer profile in the nanolayer region was combined with other parameters such as volume fraction, particle radius thermal conductivity of the fluid, particle and nanolayer, to formulate a thermal conductivity model. Results predicting the thermal conductivity of nanofluids using the model were compared with experimental results as well as studies by other researchers. The comparison of the results obtained for the Cu O/water and Ti O2/water nanofluids studied shows that the correlation proposed is in closest proximity in predicting the experimental results for the thermal conductivity of a nanofluid. Also, a parametric study was performed to understand how a number of factors affect the thermal conductivity of nanofluids using the developed correlation.
基金Projects(2011BAJ03B12-3,2013BAJ10B02-03) supported by the National Science and Technology Program during the 12th Five-year Plan Period,ChinaProject(51378005) supported by the National Natural Science Foundation,China+1 种基金Projects(DUT14RC(3)123,DUT14RC(3)129) supported by Fundamental Research Funds for the Dalian University of Tecnology,ChinaProject(DUT14ZD210) supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to increase the efficiency of solar collector, a methodology is proposed based on the analysis of its influencing factors, such as thermal conductivity of filled layer, structure forms of filled layer and heat loss coefficient. The results of analysis show that the heat transfer between pipes in evacuated tube is one of the most important factors, which can lead to the decrease of the outlet temperature of working fluid. In order to eliminate the negative influence of the heat transfer between pipes, the hollow filled-type evacuated tube with U-tube(HUFET) was developed, and the heat transfer characteristics of HUFET were analyzed by theoretical and experimental studies. The results show that the thermal resistances decrease with the increase of the thermal conductivity of filled layer. When the thermal conductivity is over 10 W/(m·K), the change of thermal resistances is very little.Furthermore, the larger the thermal conductivity of filled layer, the less the rate of the energy transfer between the two pipes to the total energy transfer, which is between the absorber tube and the working fluid. There is a little difference between the efficiencies of HUFET and UFET, with the efficiency of HUFET 2.4% higher than that of UFET. Meanwhile, the validation of the model developed was confirmed by the experiment.
基金Project(N110204015)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2012M510075)supported by the China Postdoctoral Science Foundation
文摘A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface. It is found that the increased conductivities in both doped and undoped regions help reduce the temperature difference across the wafer surface. However, the doped layer conductivity has little effect on the overall temperature distribution and difference. The temperature level and difference on the top surface drop suddenly when absorption coefficient changes from 104 to 103 m-1. When the absorption coefficient is less or equal to 103 m-1, the temperature level and difference do not change much. The emissivity has the dominant effect on the top surface temperature level and difference. Higher surface emissivity can easily increase the temperature level of the wafer surface. After using the improved property data, the overall temperature level reduces by about 200 K from the basis case. The results will help improve the current understanding of the energy transport in the rapid thermal processing and the wafer temperature monitor and control level.