期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合轻量化YOLOv8-Pose的烟草茎叶角检测算法
1
作者
高坤
李军营
+2 位作者
梁虹
马二登
张宏
《电子测量技术》
北大核心
2025年第13期84-95,共12页
茎叶角检测是烟草表型检测的重要部分,在烟草农业的增产增效和疾病预防方面有重要的意义。针对不同环境下的人工茎叶角检测效率低、周期长、检测不方便等问题,设计并构建了轻量化的烟草茎叶角检测模型FAL-YOLO。该算法构建FAI主干网络...
茎叶角检测是烟草表型检测的重要部分,在烟草农业的增产增效和疾病预防方面有重要的意义。针对不同环境下的人工茎叶角检测效率低、周期长、检测不方便等问题,设计并构建了轻量化的烟草茎叶角检测模型FAL-YOLO。该算法构建FAI主干网络结构来充分减少计算量和特征冗余,增加语义信息的利用效率。构建了融合空间注意力和通道注意力SA注意力模块的SAC检测头模块,进一步减少参数量和增强对茎叶角特征的感知能力。引入GSConv轻量化卷积降低模型复杂度和模型参数量。引入MPD-IoU损失函数来提升改进模型整体性能。采用自建的烟草茎叶角检测数据集,开展FAL-YOLO模型的对比和消融实验。实验结果表明,FAL-YOLO模型在自制数据集上的mAP达到了99.2%,相比YOLOV8-POSE模型在GFLOPs,Params分别降低了56.7%和52%,改进后的模型能够更快更精准的识别烟草植株茎叶角,为烟草农业选种育种智慧化提供支持。
展开更多
关键词
烟草茎叶角检测
主干网络
轻量化
金字塔池化
YOLOv8-Pose
在线阅读
下载PDF
职称材料
题名
融合轻量化YOLOv8-Pose的烟草茎叶角检测算法
1
作者
高坤
李军营
梁虹
马二登
张宏
机构
云南大学信息学院
云南省烟草农业科学研究院
出处
《电子测量技术》
北大核心
2025年第13期84-95,共12页
基金
中国烟草总公司重大科技项目(110202401003(JY-03))资助。
文摘
茎叶角检测是烟草表型检测的重要部分,在烟草农业的增产增效和疾病预防方面有重要的意义。针对不同环境下的人工茎叶角检测效率低、周期长、检测不方便等问题,设计并构建了轻量化的烟草茎叶角检测模型FAL-YOLO。该算法构建FAI主干网络结构来充分减少计算量和特征冗余,增加语义信息的利用效率。构建了融合空间注意力和通道注意力SA注意力模块的SAC检测头模块,进一步减少参数量和增强对茎叶角特征的感知能力。引入GSConv轻量化卷积降低模型复杂度和模型参数量。引入MPD-IoU损失函数来提升改进模型整体性能。采用自建的烟草茎叶角检测数据集,开展FAL-YOLO模型的对比和消融实验。实验结果表明,FAL-YOLO模型在自制数据集上的mAP达到了99.2%,相比YOLOV8-POSE模型在GFLOPs,Params分别降低了56.7%和52%,改进后的模型能够更快更精准的识别烟草植株茎叶角,为烟草农业选种育种智慧化提供支持。
关键词
烟草茎叶角检测
主干网络
轻量化
金字塔池化
YOLOv8-Pose
Keywords
tobacco stem and leaf angle detection
backbone network
lightweight
pyramid pooling
YOLOv8-Pose
分类号
TN911.73 [电子电信—通信与信息系统]
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合轻量化YOLOv8-Pose的烟草茎叶角检测算法
高坤
李军营
梁虹
马二登
张宏
《电子测量技术》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部