期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于特征增强与多尺度融合的烟包外观缺陷检测方法研究
1
作者 陆海华 黄春辉 +1 位作者 王旭东 曹维林 《中国烟草学报》 北大核心 2025年第4期41-50,共10页
【目的】解决烟包外观检测中目标与背景相混淆、缺陷目标较小不易识别的问题。【方法】基于YOLOv5s的改进,提出了一种融合特征增强与多尺度的烟包外观缺陷检测方法。首先在特征提取网络中引入特征重提取模块,并采用空间-深度层和非跨步... 【目的】解决烟包外观检测中目标与背景相混淆、缺陷目标较小不易识别的问题。【方法】基于YOLOv5s的改进,提出了一种融合特征增强与多尺度的烟包外观缺陷检测方法。首先在特征提取网络中引入特征重提取模块,并采用空间-深度层和非跨步卷积组合,减少信息丢失并保留小目标特征。然后在特征提取网络的最深层引入上下文注意力模块,通过学习上下文信息,使用可变形卷积提取小目标特征,增强对目标与背景的区分能力,减少漏检情况。最后在特征融合网络中引入多尺度感受野增强模块,通过多分支结构加强特征信息之间的相关性,增强特征的语义表示。【结果】FCM-YOLO相比起其他目标检测算法具有更高的缺陷检测精度。【结论】基于特征增强与多尺度融合的烟包外观检测方法有效减少信息丢失,提升目标与背景区分能力,检测精度达到98.3%,FPS为56.6,特别在易混淆类别(如污点和破损)上表现优异。 展开更多
关键词 机器视觉 烟包外观缺陷检测 YOLOv5 多尺度融合 特征增强
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部