This article investigated the deactivation caused by hydrothermal treatment and metal contamination of two cracking catalysts containing the Y and ZRP- 1 zeolites aimed at maximization of light olefin yield.Test resul...This article investigated the deactivation caused by hydrothermal treatment and metal contamination of two cracking catalysts containing the Y and ZRP- 1 zeolites aimed at maximization of light olefin yield.Test results had shown that the hydrothermal stability and resistance to metal contamination of the ZRP-1zeolite were apparently better than those of the Y zeolite. Hydrothermal treatment and metal contamination had not only changed the catalytic cracking performance of respective zeolites, but at the same time had also modified to a definite degree of the relative proportions of effective components in these two zeolites and affected the synergistic effects between them, resulting in a relative enhancement of secondary cracking ability of the catalyst and increased olefin selectivity in the FCC products. In the course of application of catalyst for maximization of light olefins yield appropriate adjustment of the relative proportion of two active components can help to alleviate the products distribution and selectivity changes caused by deactivationof FCC catalysts.展开更多
Based on the experimental data relating to the reaction of FCC gasoline on acid catalyst the analysis of product distribution, and composition of gasoline and diesel fractions have been analyzed. The occurrence of dis...Based on the experimental data relating to the reaction of FCC gasoline on acid catalyst the analysis of product distribution, and composition of gasoline and diesel fractions have been analyzed. The occurrence of disproportionation reaction of FCC gasoline on acid catalyst and the network of disproportionation reaction have been identified. Study has also shown that different reaction temperatures can result in different pathways of disproportionation reactions on acid catalyst.展开更多
Elements including P, Sb, Ce, La, B, Sn, Ti, Bi and Mg that could passivate Ni and V were studied on their migration on FCC catalysts and carriers under simulated commercial FCC operating conditions.Test results had s...Elements including P, Sb, Ce, La, B, Sn, Ti, Bi and Mg that could passivate Ni and V were studied on their migration on FCC catalysts and carriers under simulated commercial FCC operating conditions.Test results had shown that P, Sb, B and Sn compounds exhibited migration activity. The effects of temperature, fluidizing medium and contact time on migration of antimony compounds were investigated,and the mechanism regarding antimony migration was proposed. Meanwhile, it was disclosed that Ni on catalyst could stimulate Sb contained in the metal passivator to move onto FCC catalyst in tandem with the interaction between nickel and antimony.展开更多
The 40kt/a sulfur recovery unit for tail gas treating applying the reduction-absorption-recycling (RAR) technology is aimed at regeneration of the rich amine solution and recovery of sulfur to operate in tandem with t...The 40kt/a sulfur recovery unit for tail gas treating applying the reduction-absorption-recycling (RAR) technology is aimed at regeneration of the rich amine solution and recovery of sulfur to operate in tandem with the 1.2Mt/a diesel hydrofining unit. The process unit calibration data have revealed that the recovery of total sulfur reaches 99.86%, which is 6.65 percentage points higher than that before application of the RAR technology. The SO2 content in vented tail gas is 0.27 t/d, which is much less than the latest emission standard prescribed by the State. The factors that can affect the unit operation have been analyzed and corresponding measures have been suggested including the necessity to improve the control over the reaction temperature in the tail gas hydrogenation unit.展开更多
文摘This article investigated the deactivation caused by hydrothermal treatment and metal contamination of two cracking catalysts containing the Y and ZRP- 1 zeolites aimed at maximization of light olefin yield.Test results had shown that the hydrothermal stability and resistance to metal contamination of the ZRP-1zeolite were apparently better than those of the Y zeolite. Hydrothermal treatment and metal contamination had not only changed the catalytic cracking performance of respective zeolites, but at the same time had also modified to a definite degree of the relative proportions of effective components in these two zeolites and affected the synergistic effects between them, resulting in a relative enhancement of secondary cracking ability of the catalyst and increased olefin selectivity in the FCC products. In the course of application of catalyst for maximization of light olefins yield appropriate adjustment of the relative proportion of two active components can help to alleviate the products distribution and selectivity changes caused by deactivationof FCC catalysts.
文摘Based on the experimental data relating to the reaction of FCC gasoline on acid catalyst the analysis of product distribution, and composition of gasoline and diesel fractions have been analyzed. The occurrence of disproportionation reaction of FCC gasoline on acid catalyst and the network of disproportionation reaction have been identified. Study has also shown that different reaction temperatures can result in different pathways of disproportionation reactions on acid catalyst.
文摘Elements including P, Sb, Ce, La, B, Sn, Ti, Bi and Mg that could passivate Ni and V were studied on their migration on FCC catalysts and carriers under simulated commercial FCC operating conditions.Test results had shown that P, Sb, B and Sn compounds exhibited migration activity. The effects of temperature, fluidizing medium and contact time on migration of antimony compounds were investigated,and the mechanism regarding antimony migration was proposed. Meanwhile, it was disclosed that Ni on catalyst could stimulate Sb contained in the metal passivator to move onto FCC catalyst in tandem with the interaction between nickel and antimony.
文摘The 40kt/a sulfur recovery unit for tail gas treating applying the reduction-absorption-recycling (RAR) technology is aimed at regeneration of the rich amine solution and recovery of sulfur to operate in tandem with the 1.2Mt/a diesel hydrofining unit. The process unit calibration data have revealed that the recovery of total sulfur reaches 99.86%, which is 6.65 percentage points higher than that before application of the RAR technology. The SO2 content in vented tail gas is 0.27 t/d, which is much less than the latest emission standard prescribed by the State. The factors that can affect the unit operation have been analyzed and corresponding measures have been suggested including the necessity to improve the control over the reaction temperature in the tail gas hydrogenation unit.