期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
一种融合时序信息和注意力机制的广告点击率预估模型AGCN
1
作者 张大鹏 赵敏 +1 位作者 朱二喜 孙明霞 《东北师大学报(自然科学版)》 CAS 北大核心 2024年第3期87-94,共8页
为了进一步提高点击率预估模型的预估能力,提出了一种融合时序信息并带有注意力机制的广告点击率预估模型AGCN(Attention GRU&Cross Network),该模型采用并行结构融合交叉网络模型和时序模型,实现广告点击率预估过程中多元特征的融... 为了进一步提高点击率预估模型的预估能力,提出了一种融合时序信息并带有注意力机制的广告点击率预估模型AGCN(Attention GRU&Cross Network),该模型采用并行结构融合交叉网络模型和时序模型,实现广告点击率预估过程中多元特征的融合.该模型中交叉网络模型挖掘低阶特征和高阶特征信息,时序模型通过引入带有注意力机制的门控神经单元(GRU with attentional update gate,AUGRU),获取用户兴趣特征在用户长期兴趣演化过程中的贡献程度,进行用户兴趣筛选.实验表明,AGCN模型能有效提高广告点击事件的预测准确率. 展开更多
关键词 计算广告 点击率预估 交叉网络 门控神经单元 注意力机制
在线阅读 下载PDF
基于用户多类型反馈行为序列的点击率预估模型 被引量:1
2
作者 吴永庆 王钰涵 朱月 《计算机工程》 CAS CSCD 北大核心 2024年第10期405-417,共13页
在推荐系统中,现有的点击率预估模型通常采用用户近期点击过的行为序列作为模型的输入,这将使模型难以得到全面的用户兴趣表示,导致模型无法获得最优的精度。为了解决这个问题,引入一个基于用户多类型反馈行为序列的点击率预估模型(UMFB... 在推荐系统中,现有的点击率预估模型通常采用用户近期点击过的行为序列作为模型的输入,这将使模型难以得到全面的用户兴趣表示,导致模型无法获得最优的精度。为了解决这个问题,引入一个基于用户多类型反馈行为序列的点击率预估模型(UMFB)。该模型中多种类型的用户行为序列包括隐式反馈序列和显式反馈序列,并且能够对不同的用户兴趣偏好进行建模。鉴于隐式反馈序列中包含大量的噪声,结合基于傅里叶变换的兴趣去噪层来减轻干扰。此外,为了解决显式反馈序列数据的稀疏性问题,部署基于对比学习的兴趣增强层来提高建模效果。最后采用个性化兴趣融合层对用户的偏好进行建模。为了验证UMFB模型的有效性,在短视频推荐领域的KuaiRand-Pure和KuaiRand-1K数据集上进行了对比实验,结果表明,与DMT基线模型相比,UMFB模型的AUC分别提高了1.07和0.91个百分点。 展开更多
关键词 推荐系统 点击率预估 行为序列建模 多种行为序列 对比学习
在线阅读 下载PDF
基于用户实时反馈的点击率预估算法 被引量:2
3
作者 杨诚 《计算机应用》 CSCD 北大核心 2017年第10期2866-2870,共5页
当前主流的在线广告点击率(CTR)预估算法主要通过机器学习方法从大规模日志数据中挖掘用户与广告间的相关性从而提升点击率预估精度,其不足之处在于没有充分考虑用户实时行为对CTR的影响。对大规模真实在线广告日志进行分析后发现,在会... 当前主流的在线广告点击率(CTR)预估算法主要通过机器学习方法从大规模日志数据中挖掘用户与广告间的相关性从而提升点击率预估精度,其不足之处在于没有充分考虑用户实时行为对CTR的影响。对大规模真实在线广告日志进行分析后发现,在会话中,用户CTR的动态变化和用户先前的反馈行为高度相关,不同的用户行为对用户实时CTR的影响不尽相同。基于上述分析结果,提出一种基于用户实时反馈的点击率预估算法。首先,从大规模真实在线广告日志数据中定量分析用户反馈和点击率预估精度的相关关系;然后,根据分析结果将用户的反馈行为特征化;最后,使用机器学习方法对用户的行为进行建模,并根据用户的反馈实时动态调整广告投放,从而提升在线广告系统的点击率预估精度。实验结果表明,用户实时反馈特征和用户点击率高度相关;相比于传统没有用户实时反馈信息的预测模型,该算法在测试集上对AUC(Area Under the Curve)和RIG(Relative Information Gain)指标提升分别为0.83%和6.68%。实验结果表明,用户实时反馈特征显著提高点击率预估的精度。 展开更多
关键词 机器学习 计算广告学 点击率预估 个性化 实时反馈
在线阅读 下载PDF
大数据平台下的互联网广告点击率预估模型 被引量:7
4
作者 魏晓航 于重重 +1 位作者 田嫦丽 陈秀新 《计算机工程与设计》 北大核心 2017年第9期2504-2508,共5页
现存的广告点击率预估模型提取的特征维数较多,数据量较大,使得传统平台在应用时压力大,反应时间较长。针对这一问题,提出梯度提升决策树与因子分解机相结合的广告点击率预估模型,将基础特征库里的连续特征离散化,利用梯度提升决策树对... 现存的广告点击率预估模型提取的特征维数较多,数据量较大,使得传统平台在应用时压力大,反应时间较长。针对这一问题,提出梯度提升决策树与因子分解机相结合的广告点击率预估模型,将基础特征库里的连续特征离散化,利用梯度提升决策树对输入特征进行非线性转化,利用Hadoop大数据平台进行分布式训练,高效快速地提取出高层特征,利用因子分解机融合模型解决不均衡分类问题,利用AUC指标对模型进行评估,与常用广告点击率预估模型进行对比。实验结果表明,大数据平台以及并行化的应用使特征提取更加高效,模型解决了分类不均问题,具有更好的广告点击率预估效果。 展开更多
关键词 点击率预估 梯度提升决策树 Hadoop大数据平台 分布式训练 因子分解机
在线阅读 下载PDF
基于注意力机制的兴趣网络点击率预估模型 被引量:5
5
作者 许王昊 肖秦琨 《计算机工程》 CAS CSCD 北大核心 2021年第1期101-108,共8页
广告点击率(CTR)是互联网公司进行流量分配的重要依据,针对目前点击率预估精度较低的问题,结合通用的神经网络解决方案,构建一种基于注意力机制的深度兴趣网络(ADIN)模型。设计一个局部激活单元和自适应激活函数,根据用户历史行为和给... 广告点击率(CTR)是互联网公司进行流量分配的重要依据,针对目前点击率预估精度较低的问题,结合通用的神经网络解决方案,构建一种基于注意力机制的深度兴趣网络(ADIN)模型。设计一个局部激活单元和自适应激活函数,根据用户历史行为和给定广告自适应地学习用户兴趣。引入注意力机制,区分不同特征对预测结果的影响程度,从而增强模型的可解释性。在3个公开数据集上的实验结果表明,相对LR、PNN等CTR预估模型,ADIN模型具有更高的AUC值和更低的LogLoss值,其预测效果更优。 展开更多
关键词 点击率预估 神经网络 局部激活 自适应激活函数 注意力机制
在线阅读 下载PDF
面向视频冷启动问题的点击率预估 被引量:2
6
作者 章磊敏 董建锋 +2 位作者 包翠竹 纪守领 王勋 《软件学报》 EI CSCD 北大核心 2022年第12期4838-4850,共13页
视频的点击率预估是视频推荐系统中的重要任务之一,推荐系统可以根据点击率的预估调整视频推荐顺序以提升视频推荐的效果.近年来,随着视频数量的爆炸式增长,视频推荐的冷启动问题也变得愈发严重.针对这个问题,提出了一个新的视频点击率... 视频的点击率预估是视频推荐系统中的重要任务之一,推荐系统可以根据点击率的预估调整视频推荐顺序以提升视频推荐的效果.近年来,随着视频数量的爆炸式增长,视频推荐的冷启动问题也变得愈发严重.针对这个问题,提出了一个新的视频点击率预估模型,通过使用视频的内容特征以及上下文特征来加强视频点击率预估的效果;同时,通过对冷启动场景的模拟训练和基于近邻的替代方法提升模型应对新视频点击率预估的能力.提出的模型可以同时对旧视频和新视频进行点击率预估.在两个真实的电视剧(Track_1_series)和电影(Track_2_movies)点击率预估数据集上的实验表明:提出的模型可以显著改善对旧视频的点击率预估性能,并在两个数据集上均超过了现有的模型;对于新视频,相比于不考虑冷启动问题的模型只能获得0.57左右的AUC性能,该模型在两个数据集上分别获得0.645和0.615的性能,表现出针对冷启动问题更好的鲁棒性. 展开更多
关键词 视频推荐 点击率预估 冷启动问题 内容特征 上下文特征
在线阅读 下载PDF
基于特征与域感知的点击率预估方法 被引量:1
7
作者 赵越 武志昊 赵苡积 《计算机工程》 CAS CSCD 北大核心 2022年第3期60-68,共9页
点击率预估是推荐系统中的核心任务,其关键是学习有效的特征交互,但现有基于深度神经网络的点击率预估方法未考虑冷启动问题,导致准确率降低。结合特征信息和域信息的嵌入,提出一种特征交互的点击率预估方法 FF-GNN。利用基于图神经网... 点击率预估是推荐系统中的核心任务,其关键是学习有效的特征交互,但现有基于深度神经网络的点击率预估方法未考虑冷启动问题,导致准确率降低。结合特征信息和域信息的嵌入,提出一种特征交互的点击率预估方法 FF-GNN。利用基于图神经网络的交互模块分别提取特征嵌入和域嵌入的结构信息,建模细粒度的特征交互和粗粒度的域交互过程。同时通过设计图神经网络的权重计算模块,交叉引用特征图神经网络和域图神经网络的低阶特征信息,实现特征交互和个性化建模域交互。在此基础上,采用注意力机制融合特征交互和域交互模块的结果预测点击率。在Criteo和Frappe公开数据集上的实验结果验证了FF-GNN方法的有效性,其AUC指标相较于同类型Fi-GNN方法分别提高0.57和0.85个百分点,能够同时关注特征和域信息,提高点击率预估的准确度。 展开更多
关键词 点击率预估 图神经网络 特征交互 域交互 个性化建模
在线阅读 下载PDF
基于改进FM算法和注意力机制的深度点击率预估模型 被引量:7
8
作者 李兴兵 谢珺 +2 位作者 续欣莹 李小飞 赵旭栋 《南京理工大学学报》 CAS CSCD 北大核心 2021年第4期429-438,共10页
针对目前的广告点击率预估模型未能充分学习低阶特征且忽略了不同高阶特征对模型准确率的影响不同的问题,提出了一种基于注意力机制和深度学习的点击率预估模型。该模型采用改进因子分解机(Factorization machine,FM)算法,将全息简化表... 针对目前的广告点击率预估模型未能充分学习低阶特征且忽略了不同高阶特征对模型准确率的影响不同的问题,提出了一种基于注意力机制和深度学习的点击率预估模型。该模型采用改进因子分解机(Factorization machine,FM)算法,将全息简化表示(Holographic reduced representation,HRR)的压缩外积用于FM中,从而更好地学习低阶特征,帮助模型获得更好地表示。采用深度神经网络(Deep neural network,DNN)对高阶特征建模学习。引入注意力神经网络区分不同高阶特征交互的重要性来更好地学习高阶特征,从而得到一种能够同时有效学习到低阶特征和高阶特的点击率(Click-through rate,CTR)模型——基于改进FM算法和注意力机制的深度点击率预估模型(Deep click rate prediction model based on attention mechanism and improved FM algorithm,DAHFM)以提升模型的预估性能。在Criteo和MovieLens-1M数据集上大量的实验表明,DAHFM模型相比逻辑回归(Logistic regression,LR)、FM和DeepFM等模型不仅有效学习了特征信息,而且一定程度上提升了模型的性能和点击率的预估效果。 展开更多
关键词 点击率预估 因子分解机 注意力机制 深度神经网络 组合特征
在线阅读 下载PDF
基于深度置信网络的广告点击率预估的优化 被引量:5
9
作者 陈杰浩 张钦 +2 位作者 王树良 史继筠 赵子芊 《软件学报》 EI CSCD 北大核心 2019年第12期3665-3682,共18页
随着互联网广告的飞速发展,如何预测目标用户对互联网广告的点击率(click-through rate,简称CTR),成为精确广告推荐投放的关键技术,并成为计算广告领域的研究热点和深度神经网络的应用热点.为了提高广告点击率预估的精确度,提出了基于... 随着互联网广告的飞速发展,如何预测目标用户对互联网广告的点击率(click-through rate,简称CTR),成为精确广告推荐投放的关键技术,并成为计算广告领域的研究热点和深度神经网络的应用热点.为了提高广告点击率预估的精确度,提出了基于深度置信网络的广告点击率预估模型,并通过基于Kaggle数据挖掘平台数据集的1000万条随机数据的实验,研究不同的隐藏层层数和隐含节点数目对预测结果的影响.为了解决深度置信网络在数据规模较大的工业界解决方案中的训练效率问题,通过实验证明:广告点击率预估中,深度置信网络的损失函数存在大量的驻点,并且这些驻点对网络训练效率有极大的影响.为了提高模型效率,从发掘网络损失函数特性入手,进一步提出了基于随机梯度下降算法和改进型粒子群算法的融合算法,以优化网络训练.融合算法在迭代步长小于阈值时可以跳出驻点平面,继续正常迭代.实验结果表明,与传统的基于梯度提升决策树和逻辑回归的广告点击率预估模型以及模糊深度神经网络模型相比,基于深度置信网络的预估模型具有更好的预估精度,在均方误差、曲线下面积和对数损失函数指标上分别提升2.39%,9.70%,2.46%和1.24%,7.61%,1.30%;使用融合方法训练深度置信网络,训练效率提高30%~70%. 展开更多
关键词 广告点击率预估 深度置信网络 粒子群算法 融合算法
在线阅读 下载PDF
基于注意力机制的可解释点击率预估模型研究 被引量:5
10
作者 杨斌 梁婧 +1 位作者 周佳薇 赵梦赐 《计算机科学》 CSCD 北大核心 2023年第5期12-20,共9页
在推荐系统研发中,点击率(Click-Through Rate,CTR)预估是非常重要的工作,点击率预估精度的提升直接影响到整个推荐系统的收益,对其性能和解释性的研究有助于理解系统决策的机理,同时还能帮助优化需求和系统设计。当前点击率预估深度模... 在推荐系统研发中,点击率(Click-Through Rate,CTR)预估是非常重要的工作,点击率预估精度的提升直接影响到整个推荐系统的收益,对其性能和解释性的研究有助于理解系统决策的机理,同时还能帮助优化需求和系统设计。当前点击率预估深度模型多基于线性特征交互和深度特征提取进行设计。由于深度模型的黑盒特点,该类模型在解释性方面存在局限性,并且在先前的研究中,对点击率预估模型的解释性研究非常少。因此,文中基于多头自注意力机制,对该类模型的解释性进行研究,通过多头注意力机制对特征嵌入、线性特征交互和深度部分进行增强和解释,在深度部分设计了两种模型,即注意力增强的深度神经网络和注意力叠加的深度模型,通过计算每个模块的注意力得分对其进行解释。所提方法在多个真实数据集上进行了大量实验,结果表明所提方法能够有效提升模型效果,并且模型自身带有一定的解释性。 展开更多
关键词 推荐系统 点击率预估 多头自注意力机制 特征交互 模型解释性
在线阅读 下载PDF
基于高阶特征交互的点击率预估模型的实现 被引量:2
11
作者 高巍 周河晓 李大舟 《计算机工程与设计》 北大核心 2021年第10期2852-2859,共8页
传统的低阶特征模型不能充分利用大数据,从多个维度描述数据和用户。专注于高阶特征提取,结合显式和隐式特征交互的点击率预估模型可以利用好大数据的特点。使用Tensorflow框架搭建包含深度神经网络、因子压缩交互网络和多重特征自交互... 传统的低阶特征模型不能充分利用大数据,从多个维度描述数据和用户。专注于高阶特征提取,结合显式和隐式特征交互的点击率预估模型可以利用好大数据的特点。使用Tensorflow框架搭建包含深度神经网络、因子压缩交互网络和多重特征自交互网络结构的模型,使用淘宝展示广告点击率预估数据集进行训练。模型采用对数损失值和ROC曲线下面积作为评价指标,与原始的LR、FM、Deep&Wide等典型模型进行比较,对数损失值降低了0.04,AUC值提高了0.05左右。 展开更多
关键词 点击率预估 推荐系统 高阶特征交互 深度神经网络 因子压缩交互网络 多重特征自交互网络
在线阅读 下载PDF
基于域内特征间相似性的点击率预估优化
12
作者 雷李想 武志昊 +1 位作者 刘钰 周子站 《计算机工程》 CAS CSCD 北大核心 2023年第2期238-245,共8页
基于深度学习的点击率预估模型多数通过建模各个域的特征之间的交互关系提升预估准确率。特征嵌入向量对模型效果具有重要影响,而现有的CTR模型中不同特征的嵌入向量学习过程相互独立,且由于特征长尾分布导致大部分低频特征不能学习到... 基于深度学习的点击率预估模型多数通过建模各个域的特征之间的交互关系提升预估准确率。特征嵌入向量对模型效果具有重要影响,而现有的CTR模型中不同特征的嵌入向量学习过程相互独立,且由于特征长尾分布导致大部分低频特征不能学习到较好的向量表示,严重影响模型的预测效果。基于域内特征间存在隐含的相似性,提出两种分别基于特征间共现概率和游走概率的相似度定义和对应的相似性图构建方法,并给出结合剪枝策略的广度优先遍历算法实现相似特征的高效计算。在此基础上,基于域内特征相似性图,设计一种嵌入生成器,对于低频特征,在域内特征相似性图上通过图神经网络聚合与其相似的特征信息,生成新的特征嵌入,作为预处理过程对特征嵌入向量进行数据增强,提升嵌入向量的表示学习质量。在公开数据集Criteo、Avazu上的实验结果表明,该方法明显提升点击率预估模型的预测准确率,其中对代表性点击率预估模型xDeepFM和AutoInt,AUC指标分别提升了0.007和0.008,LogLoss则下降了0.009和0.006,证明了嵌入生成模型的有效性。 展开更多
关键词 点击率预估 稀疏特征 特征嵌入 特征相似性 图神经网络
在线阅读 下载PDF
网络广告点击率预估的特征学习及技术研究进展 被引量:1
13
作者 刘华玲 恽文婧 +1 位作者 林蓓 丁宇杰 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2019年第5期565-573,共9页
大数据时代有效预估网络广告点击率,对企业精准营销和提高投资回报率具有至关重要的作用。对网络广告点击率预估的特征学习及技术研究进行了综述,从原始数据特点及解决方法、点击率预估的特征学习、点击率预估模型构建、评价指标选取等... 大数据时代有效预估网络广告点击率,对企业精准营销和提高投资回报率具有至关重要的作用。对网络广告点击率预估的特征学习及技术研究进行了综述,从原始数据特点及解决方法、点击率预估的特征学习、点击率预估模型构建、评价指标选取等方面,分析了网络广告点击率预估的国内外研究现状。点击率预估可应用于互联网广告投放、推荐系统等多个领域,具有较高的研究价值。 展开更多
关键词 点击率预估 特征学习 网络广告
在线阅读 下载PDF
融合三支决策与交互特征选择的点击率预估模型研究
14
作者 赵旭栋 谢珺 续欣莹 《小型微型计算机系统》 CSCD 北大核心 2022年第10期2106-2112,共7页
为了提升预估效果,现有的因子分解机及其衍生的点击率预估模型会对特征域内所有的特征进行交互,但不加区分对所有特征进行交互会产生冗余交互特征,给模型带来大量噪声信息,并且会占用大量计算资源,降低模型的预估效果.针对点击率预估模... 为了提升预估效果,现有的因子分解机及其衍生的点击率预估模型会对特征域内所有的特征进行交互,但不加区分对所有特征进行交互会产生冗余交互特征,给模型带来大量噪声信息,并且会占用大量计算资源,降低模型的预估效果.针对点击率预估模型中冗余的交互特征,提出了TIFS(Three-way Decision&Interactive Feature Selection models)模型.首先,TIFS在因子分解机及其衍生的点击率预估模型中加入了交互特征选择机制,减少了冗余的交互特征带来的噪声信息;其次,该模型的交互特征选择机制融合了三支决策思想,能够更加合理的选择交互特征,用较小的计算代价提升了特征交互的质量.在3种公开数据集上的实验结果表明,TIFS点击率预估模型在效率和表现上优于原模型. 展开更多
关键词 点击率预估 特征交互 三支决策 交互特征选择
在线阅读 下载PDF
基于行为延迟共享网络的个性化商品推荐方法 被引量:3
15
作者 张红霞 董燕辉 +1 位作者 肖军弼 杨勇进 《电子与信息学报》 EI CSCD 北大核心 2021年第10期2993-3000,共8页
针对电商平台难以利用历史浏览行为进行个性化商品推荐的问题,该文提出了一种行为延迟共享网络模型(BDSN),充分结合历史浏览信息,对用户进行精准浏览推荐。该模型提出行为延迟门控循环神经单元(BDGRU),将历史浏览时间间隔作为用户活跃... 针对电商平台难以利用历史浏览行为进行个性化商品推荐的问题,该文提出了一种行为延迟共享网络模型(BDSN),充分结合历史浏览信息,对用户进行精准浏览推荐。该模型提出行为延迟门控循环神经单元(BDGRU),将历史浏览时间间隔作为用户活跃度因子,对神经元状态进行更新,用于计算用户的兴趣表示。为了提高向量表示的一致性,该模型提出共享参数网络,将用户侧和商品侧的表示向量收敛到统一空间,解决个性化商品推荐点击率预估问题。并在真实数据集上进行实验,结果表明,BDSN模型在验证集上的AUC指标和损失函数均处于最优,在测试集上的AUC指标相较基本模型提高37%,能够有效提升商品推荐的准确性。 展开更多
关键词 推荐系统 共享网络 用户活跃度 点击率预估 门控循环单元
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部