当前基于三维点云的工业异常检测仍处于起步阶段,较先进的方法将点云栅格化成2D图片或采用传统算子提取点云特征,有待进一步研究。对此,提出一种基于3D归一化流的双分支点云异常检测模型。以3D归一化流作为整体框架,结合双分支交互融合...当前基于三维点云的工业异常检测仍处于起步阶段,较先进的方法将点云栅格化成2D图片或采用传统算子提取点云特征,有待进一步研究。对此,提出一种基于3D归一化流的双分支点云异常检测模型。以3D归一化流作为整体框架,结合双分支交互融合模块进行局部特征聚合,以并行结构聚合由Transformer和卷积神经网络(Convs)架构提取的不同焦点的点云特征;通过3D归一化流对特征金字塔在欧氏空间和潜在空间之间的可逆映射进行建模,基于受试者曲线下面积,所提模型从分布学习的角度实现了图像级(I-AUROC)的高效异常检测。在MVTec-3D AD数据集上进行的实验结果表明,所提模型在点云异常检测中取得了比目前先进方法更好的性能,相较于M3DM(Multi-3D-Memory)、AST(Asymmetric Student-Teacher Networks),I-AUROC(Image-level Area Under the Receiver Operating Characteristiccurve)指标分别提升了1.8和5.9个百分点。展开更多
使用图像信息补充三维点云的几何和纹理信息,可以对三维物体进行有效地检测与分类。为了能够更好地将图像特征融入点云,设计了一个端到端的深度神经网络,提出了一个新颖的融合模块PI-Fusion(point cloud and image fusion),使用图像特...使用图像信息补充三维点云的几何和纹理信息,可以对三维物体进行有效地检测与分类。为了能够更好地将图像特征融入点云,设计了一个端到端的深度神经网络,提出了一个新颖的融合模块PI-Fusion(point cloud and image fusion),使用图像特征以逐点融合的方式来增强点云的语义信息。另外,在点云下采样的过程中,使用距离最远点采样和特征最远点采样的融合采样方式,以在小目标上采样到更多的点。经过融合图像和点云特征的三次下采样之后,通过一个候选点生成层将点移动到目标物体的中心。最后,通过一个单阶段目标检测头,得出分类置信度和回归框。在公开数据集KITTI的实验表明,与3DSSD相比,此方法在简单、中等、困难难度的检测上分别提升了3.37、1.92、1.58个百分点。展开更多
文摘当前基于三维点云的工业异常检测仍处于起步阶段,较先进的方法将点云栅格化成2D图片或采用传统算子提取点云特征,有待进一步研究。对此,提出一种基于3D归一化流的双分支点云异常检测模型。以3D归一化流作为整体框架,结合双分支交互融合模块进行局部特征聚合,以并行结构聚合由Transformer和卷积神经网络(Convs)架构提取的不同焦点的点云特征;通过3D归一化流对特征金字塔在欧氏空间和潜在空间之间的可逆映射进行建模,基于受试者曲线下面积,所提模型从分布学习的角度实现了图像级(I-AUROC)的高效异常检测。在MVTec-3D AD数据集上进行的实验结果表明,所提模型在点云异常检测中取得了比目前先进方法更好的性能,相较于M3DM(Multi-3D-Memory)、AST(Asymmetric Student-Teacher Networks),I-AUROC(Image-level Area Under the Receiver Operating Characteristiccurve)指标分别提升了1.8和5.9个百分点。
文摘使用图像信息补充三维点云的几何和纹理信息,可以对三维物体进行有效地检测与分类。为了能够更好地将图像特征融入点云,设计了一个端到端的深度神经网络,提出了一个新颖的融合模块PI-Fusion(point cloud and image fusion),使用图像特征以逐点融合的方式来增强点云的语义信息。另外,在点云下采样的过程中,使用距离最远点采样和特征最远点采样的融合采样方式,以在小目标上采样到更多的点。经过融合图像和点云特征的三次下采样之后,通过一个候选点生成层将点移动到目标物体的中心。最后,通过一个单阶段目标检测头,得出分类置信度和回归框。在公开数据集KITTI的实验表明,与3DSSD相比,此方法在简单、中等、困难难度的检测上分别提升了3.37、1.92、1.58个百分点。