期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于组稀疏优化的强化学习稀疏表征 被引量:1
1
作者 蔡林逸 冯翔 虞慧群 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期913-919,共7页
强化学习由于具有出色的数据效率和快速学习的能力,开始应用于许多实际问题以学习复杂策略。但是高维环境中的强化学习常常受限于维度灾难或者灾难性干扰,性能表现不佳甚至导致学习失败。围绕表征学习,提出了一种符合Lasso类型优化的稀... 强化学习由于具有出色的数据效率和快速学习的能力,开始应用于许多实际问题以学习复杂策略。但是高维环境中的强化学习常常受限于维度灾难或者灾难性干扰,性能表现不佳甚至导致学习失败。围绕表征学习,提出了一种符合Lasso类型优化的稀疏卷积深度强化学习方法。首先,对稀疏表征的理论和优势进行综述,将稀疏卷积方法引入深度强化学习中,提出了一种新的稀疏表征方法;其次,对由稀疏卷积编码定义的可微优化层进行了数学推导并给出了优化算法,为了验证新的稀疏表征方法的有效性,将其应用于相关文献常见的基准环境中进行测试。实验结果表明,应用稀疏卷积编码的算法具有更好的性能和鲁棒性,在降低了50%以上模型开销的前提下,取得了相当甚至更优的性能。此外,还研究了稀疏程度对算法性能的影响,结果显示适当的稀疏度能获得更优的性能。 展开更多
关键词 强化学习 灾难性干扰 稀疏表征 隐式层 Lasso优化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部