台风会对配电网系统造成严重影响,制定架空线路的防风加固规划方案至关重要。为提高配电网抵御自然灾害的韧性,提出一种计及台风灾害全过程模拟的配电网差异化加固规划韧性提升方法,通过模拟台风登陆至消亡时刻全过程实时风况信息,对各...台风会对配电网系统造成严重影响,制定架空线路的防风加固规划方案至关重要。为提高配电网抵御自然灾害的韧性,提出一种计及台风灾害全过程模拟的配电网差异化加固规划韧性提升方法,通过模拟台风登陆至消亡时刻全过程实时风况信息,对各线路实施差异化加固。首先,利用狄利克雷过程混合模型(dirichlet process mixture model,DPMM)聚类算法提取典型台风登陆场景,结合风暴轨迹模型和Batts风场模型模拟实时台风移动路径和台风风场,计算配电网线路实时故障概率。然后,结合台风场景模拟结果和不同设计风速标准下的差异化的架空线路故障率,建立以多等级线路加固年投资成本、台风过境过程中失负荷成本、停电损失和维修成本最小为目标的双层随机规划模型,并利用Benders分解算法进行求解。最后,以改进IEEE33节点系统为例,对所提方法有效性进行了验证。展开更多
随着遥感、物联网、人工智能、大数据、云计算以及近年来迅速发展的大语言模型(large language models,简称LLMs)等高新技术持续取得突破,地震与地质灾害研究正加速从传统依赖单一数据源与经验规则的范式,迈向多源信息融合与智能驱动的...随着遥感、物联网、人工智能、大数据、云计算以及近年来迅速发展的大语言模型(large language models,简称LLMs)等高新技术持续取得突破,地震与地质灾害研究正加速从传统依赖单一数据源与经验规则的范式,迈向多源信息融合与智能驱动的风险识别和决策支持体系。基于“高新技术在地震与地质灾害领域的应用研究”专栏,系统梳理了当前在物理仿真模拟、深度学习识别、遥感集成分析、智能预警技术与知识图谱构建等关键方向的研究进展,概括展示了高新技术在灾害风险监测、致灾机制解析与应急响应支撑中的典型应用与发展趋势。在此基础上,进一步总结了多模态数据集成、灾害链建模、模型泛化能力与场景适应性等方面面临的技术瓶颈,探讨了大语言模型在地震与地质灾害领域中的潜在价值,包括知识抽取、因果推理与多场景风险研判等方面的前沿探索。展开更多
In order to explore the control effect of backfill mining on dynamic disasters under special geological mining conditions of overlying thick magmatic rock(TMR),a three-dimensional numerical model of a panel of one sid...In order to explore the control effect of backfill mining on dynamic disasters under special geological mining conditions of overlying thick magmatic rock(TMR),a three-dimensional numerical model of a panel of one side goaf in Yangliu coal mine with double-yield backfill material constitutive model was developed.The simulation results were then compared with field monitoring data.The dynamic disaster control effect of both caving and backfill mining was analyzed in three different aspects,i.e.,displacement field,stress field and energy field.The results show that in comparison to the full caving mining method,the bearing capacity of the goaf after backfilling was enhanced,the backfill mining can effectively reduce the stress and energy accumulated in the coal/rock body,and the backfill mining eliminates the further moving space of TMR and prevents its sudden rupture.Before TMR fracture,the subsidence displacement of TMR was reduced by 65.3%,the front abutment stress of panel decreased by 9.4%on average and the high energy concentration zone around panel was also significantly reduced.Overall,the results of this study provide deeper insights into the control of dynamic disasters by backfill mining in mines.展开更多
文摘台风会对配电网系统造成严重影响,制定架空线路的防风加固规划方案至关重要。为提高配电网抵御自然灾害的韧性,提出一种计及台风灾害全过程模拟的配电网差异化加固规划韧性提升方法,通过模拟台风登陆至消亡时刻全过程实时风况信息,对各线路实施差异化加固。首先,利用狄利克雷过程混合模型(dirichlet process mixture model,DPMM)聚类算法提取典型台风登陆场景,结合风暴轨迹模型和Batts风场模型模拟实时台风移动路径和台风风场,计算配电网线路实时故障概率。然后,结合台风场景模拟结果和不同设计风速标准下的差异化的架空线路故障率,建立以多等级线路加固年投资成本、台风过境过程中失负荷成本、停电损失和维修成本最小为目标的双层随机规划模型,并利用Benders分解算法进行求解。最后,以改进IEEE33节点系统为例,对所提方法有效性进行了验证。
文摘随着遥感、物联网、人工智能、大数据、云计算以及近年来迅速发展的大语言模型(large language models,简称LLMs)等高新技术持续取得突破,地震与地质灾害研究正加速从传统依赖单一数据源与经验规则的范式,迈向多源信息融合与智能驱动的风险识别和决策支持体系。基于“高新技术在地震与地质灾害领域的应用研究”专栏,系统梳理了当前在物理仿真模拟、深度学习识别、遥感集成分析、智能预警技术与知识图谱构建等关键方向的研究进展,概括展示了高新技术在灾害风险监测、致灾机制解析与应急响应支撑中的典型应用与发展趋势。在此基础上,进一步总结了多模态数据集成、灾害链建模、模型泛化能力与场景适应性等方面面临的技术瓶颈,探讨了大语言模型在地震与地质灾害领域中的潜在价值,包括知识抽取、因果推理与多场景风险研判等方面的前沿探索。
基金Project(2017YFC1503100)supported by the National Key Research and Development Program of ChinaProjects(51974062,41672301,51811530312)supported by the National Natural Science Foundation of ChinaProject(N180101028)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In order to explore the control effect of backfill mining on dynamic disasters under special geological mining conditions of overlying thick magmatic rock(TMR),a three-dimensional numerical model of a panel of one side goaf in Yangliu coal mine with double-yield backfill material constitutive model was developed.The simulation results were then compared with field monitoring data.The dynamic disaster control effect of both caving and backfill mining was analyzed in three different aspects,i.e.,displacement field,stress field and energy field.The results show that in comparison to the full caving mining method,the bearing capacity of the goaf after backfilling was enhanced,the backfill mining can effectively reduce the stress and energy accumulated in the coal/rock body,and the backfill mining eliminates the further moving space of TMR and prevents its sudden rupture.Before TMR fracture,the subsidence displacement of TMR was reduced by 65.3%,the front abutment stress of panel decreased by 9.4%on average and the high energy concentration zone around panel was also significantly reduced.Overall,the results of this study provide deeper insights into the control of dynamic disasters by backfill mining in mines.