期刊文献+
共找到4,972篇文章
< 1 2 249 >
每页显示 20 50 100
灰色神经网络预测模型的应用 被引量:10
1
作者 夏景明 肖冬荣 卓为 《统计与决策》 CSSCI 北大核心 2004年第6期24-25,共2页
关键词 灰色神经网络预测模型 经济指标 GM(1 1)模型 组合模型 线性模型 宏观经济系统
在线阅读 下载PDF
一种新的组合灰色神经网络预测模型 被引量:20
2
作者 许秀莉 罗键 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第2期164-167,共4页
对GM(1,1)灰色和几种灰色组合模型进行了讨论,针对多个相关序列预测的问题,提出了组合灰色GM(1,1)神经网络预测模型.此方法采用灰色模型对各序列进行预测,然后利用神经网络对预测值进行校正,得到最终预测值.实例表明此种模型在实际应用... 对GM(1,1)灰色和几种灰色组合模型进行了讨论,针对多个相关序列预测的问题,提出了组合灰色GM(1,1)神经网络预测模型.此方法采用灰色模型对各序列进行预测,然后利用神经网络对预测值进行校正,得到最终预测值.实例表明此种模型在实际应用中的确能够提高预测精度. 展开更多
关键词 BP神经网络 组合灰色神经网络预测模型 灰色系统理论 相关序列预测 组合预测 灰色GM(1 1)模型
在线阅读 下载PDF
改进粒子群算法优化灰色神经网络预测模型及其应用 被引量:11
3
作者 周飞 吕一清 石琳娜 《统计与决策》 CSSCI 北大核心 2017年第11期66-70,共5页
文章针对神经网络存在局部最优、收敛速度慢以及大样本等缺点,将改进的粒子群算法、灰色模型和神经网络模型有机结合,构建了改进粒子群优化灰色神经网络预测模型(IPSO-GMNN)。并与其他预测模型进行比较,实证结果表明:IPSO-GMNN预测模型... 文章针对神经网络存在局部最优、收敛速度慢以及大样本等缺点,将改进的粒子群算法、灰色模型和神经网络模型有机结合,构建了改进粒子群优化灰色神经网络预测模型(IPSO-GMNN)。并与其他预测模型进行比较,实证结果表明:IPSO-GMNN预测模型能够克服神经网络预测模型的不足,更好地识别时间序列的非线性和突变性特征。在对我国专利授权数量的预测应用中,新模型对非线性时间数据预测表现出更好的预测精度和稳定性。 展开更多
关键词 粒子群算法 灰色神经网络模型 专利授权数量 预测
在线阅读 下载PDF
基于最优可信度的月度负荷综合最优灰色神经网络预测模型 被引量:15
4
作者 李媛媛 牛东晓 《电网技术》 EI CSCD 北大核心 2005年第5期16-19,共4页
月度负荷具有增长和波动二重趋势。作者首次提出以纵向历史数据为原始序列,用灰色预测模型进行增长趋势预测;以横向历史数据为原始序列,用人工神经网络模型进行波动趋势预测的方法,并在此基础上,引入最优可信度的概念,同时考虑了月度负... 月度负荷具有增长和波动二重趋势。作者首次提出以纵向历史数据为原始序列,用灰色预测模型进行增长趋势预测;以横向历史数据为原始序列,用人工神经网络模型进行波动趋势预测的方法,并在此基础上,引入最优可信度的概念,同时考虑了月度负荷的两种趋势,建立了综合最优预测模型。该模型兼顾了前两种模型的建模特点,优于只考虑单一发展趋势负荷预测的模型。对电力负荷预测应用实例的计算结果表明,该方法明显地提高了月度负荷预测的精度,也同样适用于进行周、季负荷等具有二重趋势的负荷序列的预测。 展开更多
关键词 负荷预测 月度负荷 最优可信度 电力系统 人工神经网络 综合最优预测模型
在线阅读 下载PDF
烧结矿碱度的灰色神经网络预测模型及仿真 被引量:2
5
作者 宋强 程国彪 常卫兵 《烧结球团》 北大核心 2007年第3期24-27,共4页
本文提出了用灰色神经网络对烧结矿化学成分进行预测,并在此基础上构造了灰色神经网络模型,该模型有效地融合了灰色理论可弱化数据序列波动性和神经网络特有的适应非线性信息处理的能力,研究结果证明,本模型能在小样本、贫信息的条件下... 本文提出了用灰色神经网络对烧结矿化学成分进行预测,并在此基础上构造了灰色神经网络模型,该模型有效地融合了灰色理论可弱化数据序列波动性和神经网络特有的适应非线性信息处理的能力,研究结果证明,本模型能在小样本、贫信息的条件下对烧结矿碱度做出比较准确的预测,此种模型具有预测精度高、所需样本少、计算简便等优点,取得了比较满意的结果。和BP神经网络算法相比,灰色神经网络算法有很大的应用前景和推广价值。 展开更多
关键词 碱度 灰色神经网络 预测 烧结过程 灰色GM(1 1)
在线阅读 下载PDF
基于神经网络模型的煤层气产能预测研究
6
作者 金毅 郑晨晖 +5 位作者 宋慧波 马家恒 杨运航 刘顺喜 张昆 倪小明 《河南理工大学学报(自然科学版)》 CAS 北大核心 2025年第1期46-56,共11页
目的煤层气产能主要受地质和工程因素影响,阐明这些因素对煤层气井产能的影响机制是实现储层精细改造和煤层气井提产的基础。方法本文以沁水盆地柿庄南区块为研究对象,综合考虑地质背景、储层物性和动态排采数据,利用神经网络算法开展... 目的煤层气产能主要受地质和工程因素影响,阐明这些因素对煤层气井产能的影响机制是实现储层精细改造和煤层气井提产的基础。方法本文以沁水盆地柿庄南区块为研究对象,综合考虑地质背景、储层物性和动态排采数据,利用神经网络算法开展煤层气产能预测。首先,利用灰色关联分析法遴选出10个地质参数作为煤层气产能预测的主控因素,在此基础上,运用模糊数学法实现研究区34口煤层气井富集区划分,最后,根据分类结果,结合实际排采数据,分别利用BP(back propagation)和LSTM(long short-term memory)神经网络算法实现煤层气井日产气量预测。结果结果表明:(1)渗透率、含气饱和度和储层压力梯度等10个参数是影响研究区煤层气产气性能的关键因素;(2)利用模糊数学评价方法评价煤层气的富集,可将研究区34口井产气效果划分为有利区、较有利区和不利区;(3)依托LSTM算法建立了煤储层日产气量预测模型,预测误差值为4.06%~14.79%,平均误差值为11.09%,预测精度明显高于BP神经网络模型,结论根据LSTM算法建立的煤储层日产气量预测模型稳定性好且预测精度高,可作为煤储层产能长程预测的一种有效手段,进而为煤层气开发工艺布施与排采方案制定提供科学依据。 展开更多
关键词 LSTM神经网络 BP神经网络 灰色关联分析 产能预测
在线阅读 下载PDF
车辆主动悬架RBF神经网络的模型预测控制仿真研究
7
作者 顾苏怡 蒋昌华 《中国工程机械学报》 北大核心 2025年第3期410-414,共5页
为了提升车辆行驶的稳定性和乘坐的舒适性,提出一种基于径向基函数(RBF)神经网络的模型预测控制(MPC)系统,通过仿真验证主动悬架控制系统的有效性。创建7自由度车辆主动悬架简图,定义了车辆主动悬架动力学方程式。构建主动悬架MPC系统,... 为了提升车辆行驶的稳定性和乘坐的舒适性,提出一种基于径向基函数(RBF)神经网络的模型预测控制(MPC)系统,通过仿真验证主动悬架控制系统的有效性。创建7自由度车辆主动悬架简图,定义了车辆主动悬架动力学方程式。构建主动悬架MPC系统,利用RBF神经网络结构捕捉车辆主动悬架系统的复杂动态特性,通过对大量数据的学习和训练,能够快速建立主动悬架MPC参数,最终实现对车辆主动悬架系统的精确控制。利用Matlab软件对车辆主动悬架的车身加速度、悬架位移、轮胎位移进行仿真,评估车辆不同控制策略的行驶性能。结果显示:在路面信号激励下采用MPC,车辆主动悬架的车身加速度、悬架位移、轮胎位移变化幅度较大;采用RBF神经网络的MPC,车辆主动悬架的车身加速度、悬架位移、轮胎位移变化幅度较小。所提出的RBF神经网络MPC系统,能够增强车辆主动悬架抗干扰能力,从而保持车辆行驶的稳定性和舒适性。 展开更多
关键词 车辆 主动悬架 RBF神经网络 模型预测控制 仿真
在线阅读 下载PDF
基于GM(1,1)与BP神经网络模型的西安市地下水位动态特征及趋势预测研究
8
作者 李培月 梁豪 +2 位作者 杨俊岩 田艳 寇晓梅 《西北地质》 北大核心 2025年第3期236-245,共10页
地下水是干旱与半干旱地区极其珍贵的自然资源,地下水动态的精准预测与评估关乎着地下水资源的有效保护与合理利用。本研究根据西安市2010~2020年地下水位监测数据,系统分析了西安市地下水位年际、年内动态变化特征,探究了影响地下水位... 地下水是干旱与半干旱地区极其珍贵的自然资源,地下水动态的精准预测与评估关乎着地下水资源的有效保护与合理利用。本研究根据西安市2010~2020年地下水位监测数据,系统分析了西安市地下水位年际、年内动态变化特征,探究了影响地下水位动态的主要因素,通过SPSS对影响地下水位动态的降水量和开采量两个主要因素进行相关性分析,并基于GM(1,1)灰度预测模型和BP神经网络模型对地下水位变动趋势进行了预测。结果表明:(1)2010~2016年,地下水位整体上呈下降趋势,2016~2020年间,得益于地下水压采和供水设施的不断优化完善,地下水位呈回升趋势。(2)降水和人为开采均对西安市地下水位变动具有显著影响;地下水位埋深是决定受降水影响程度的关键因素,其中河漫滩地区最为敏感,阶地次之,黄土塬区较弱。地下水开采量与地下水位埋深具有更强的相关性。这凸显了其在调控地下水位动态变化中的主导地位。(3)地下水位预测结果显示,随着地下水开采量呈现出逐年下降的趋势,研究区地下水整体处于波动上升趋势。本研究对西安市地下水动态的影响因素及预测趋势进行了研究,对地下水资源管理和可持续发展具有重要参考价值。 展开更多
关键词 地下水位动态 主导因素 回归分析 灰色模型 BP神经网络预测
在线阅读 下载PDF
预测输尿管软镜碎石术后并发尿源性脓毒症的反向传播神经网络模型构建
9
作者 陈文炜 何彦丰 +5 位作者 卢凯鑫 刘昌毅 江涛 张华 高锐 薛学义 《浙江大学学报(医学版)》 北大核心 2025年第1期99-107,I0032-I0034,共12页
目的:构建输尿管软镜碎石术(FURL)后并发尿源性脓毒症的反向传播神经网络预测模型。方法:纳入428例接受FURL的肾结石患者,根据术后是否并发尿源性脓毒症分为脓毒症组(42例)和对照组(386例)。采用logistic回归分析确定FURL后并发尿源性... 目的:构建输尿管软镜碎石术(FURL)后并发尿源性脓毒症的反向传播神经网络预测模型。方法:纳入428例接受FURL的肾结石患者,根据术后是否并发尿源性脓毒症分为脓毒症组(42例)和对照组(386例)。采用logistic回归分析确定FURL后并发尿源性脓毒症的影响因素及其交互作用。同时建立logistic回归模型和神经网络模型进行预测,通过受试者工作特征曲线评估两种模型的预测效能。结果:单因素分析显示,结石手术史、性别、尿培养阳性、结石直径、糖尿病、手术时间、白细胞、血小板、C反应蛋白(CRP)及肝素结合蛋白(HBP)水平与FURL后并发尿源性脓毒症显著相关(均P<0.05)。多因素分析表明,尿培养阳性、CRP及HBP水平是FURL后并发尿源性脓毒症的独立危险因素(均P<0.05)。交互作用分析显示,CRP与HBP对FURL后并发尿源性脓毒症的影响在相加模型(RERI=8.453,95%CI:2.645~16.282;AP=0.696,95%CI:0.131~1.273;S=3.369,95%CI:1.176~7.632)和相乘模型(OR=1.754,95%CI:1.218~3.650)中存在交互作用;CRP与尿培养对FURL后并发尿源性脓毒症的影响在相乘模型(OR=2.449,95%CI:1.525~3.825)中存在交互作用。预测模型比较显示,反向传播神经网络模型较logistic回归模型具有更优的预测效能。结论:CRP和HBP水平是FURL后并发尿源性脓毒症的独立危险因素,基于CRP、HBP等因素构建的反向传播神经网络模型较logistic回归模型具有更高的预测准确性。 展开更多
关键词 肝素结合蛋白 C反应蛋白 输尿管软镜碎石术 尿源性脓毒症 预测 LOGISTIC回归模型 反向传播神经网络模型
在线阅读 下载PDF
不同温湿度贮藏对澳洲坚果鲜果品质的影响及BP神经网络预测模型构建
10
作者 付镓榕 马尚玄 +6 位作者 杨悦雪 徐文婷 兰秀华 魏元苗 黄克昌 贺熙勇 郭刚军 《食品工业科技》 北大核心 2025年第13期314-326,共13页
为分析澳洲坚果鲜果在短期贮藏中的品质变化,本文探究贮藏温湿度(30℃-RH80%、35℃-RH80%、40℃-RH80%、30℃-RH90%、35℃-RH90%、40℃-RH90%)对鲜果果皮含水量、带壳果含水量、果仁含水量、青皮裂果率、霉果率、酸价、过氧化值、碘值... 为分析澳洲坚果鲜果在短期贮藏中的品质变化,本文探究贮藏温湿度(30℃-RH80%、35℃-RH80%、40℃-RH80%、30℃-RH90%、35℃-RH90%、40℃-RH90%)对鲜果果皮含水量、带壳果含水量、果仁含水量、青皮裂果率、霉果率、酸价、过氧化值、碘值、总酚含量、总糖含量的影响,并基于反向传播(Backpropagation,BP)神经网络构建澳洲坚果鲜果短期贮藏的品质预测模型,测试集评估模型的预测性能。结果表明,在短期贮藏中35℃-RH80%条件贮藏的水分损失最快,35℃贮藏的青皮裂果率增速显著高于30、40℃(P<0.05),30℃时果皮霉果率增速显著高于35、40℃(P<0.05)。在贮藏期间酸价、过氧化值均呈上升趋势,贮藏结束时35℃-RH90%条件贮藏的酸价最高,为15.57 mg/100 g,30℃-RH80%条件贮藏的过氧化值最高,为36.44μg/g;碘值、总酚含量呈先上升后下降的趋势,贮藏期间35℃-RH90%条件贮藏的碘值增幅最大为119.26 mg/g,贮藏结束40℃-RH80%条件贮藏的碘值最低为675.72 mg/g,贮藏结束35℃-RH80%、40℃-RH90%总酚含量均为0.88 mg/g,显著低于其他贮藏条件(P<0.05);总糖含量呈下降趋势,贮藏结束35℃-RH80%条件贮藏的总糖含量显著低于其他贮藏条件(P<0.05)。相关性分析表明预测模型的输入层与输出层具有较好的相关性,澳洲坚果鲜果短期贮藏的品质预测模型隐含层节点数为7,酸价、过氧化值、碘值、总酚含量、总糖含量训练集的相关系数分别为0.97952、0.98815、0.94869、0.94882、0.97109,预测精度良好。因此,神经网络预测模型可用于预测澳洲坚果鲜果在采后运输及贮藏过程中的品质变化,并为神经网络预测模型在澳洲坚果品质预测中的应用奠定基础。 展开更多
关键词 澳洲坚果 鲜果 贮藏品质 预测模型 反向传播(BP)神经网络
在线阅读 下载PDF
农村消费增长趋势预测优化模型构建——基于面板计量与SCG-BP神经网络 被引量:1
11
作者 王刚 宋思睿 《商业经济研究》 北大核心 2025年第7期56-60,共5页
农村居民消费增长作为决定经济快速可持续发展的重要因素之一,对释放农村地区消费潜力、拉动内需、增强内循环活力具有重要价值和意义。本文运用面板计量模型对全国各省2006-2022年相关数据进行实证分析,提出了SCG-BP预测模型,采用量化... 农村居民消费增长作为决定经济快速可持续发展的重要因素之一,对释放农村地区消费潜力、拉动内需、增强内循环活力具有重要价值和意义。本文运用面板计量模型对全国各省2006-2022年相关数据进行实证分析,提出了SCG-BP预测模型,采用量化共轭梯度法训练BP神经网络,对农村居民消费增长趋势进行预测,有效解决了BP神经网络收敛速度慢、局部振动的缺点。结果表明,SCG-BP模型在预测精度上优于传统BP神经网络模型、灰度预测模型以及指数平滑预测模型;在训练集和测试集上的误差率均小于0.02%,具有较高精度。结合实证分析结果,从提高收入、完善保障、人才回流等方面提出促进农村居民消费增长潜力的合理性建议。 展开更多
关键词 面板模型 农村消费增长潜力 预测模型 人工神经网络 SCG-BP神经网络
在线阅读 下载PDF
图神经网络模型预测和解释离子液体毒性的研究
12
作者 冯海军 章冰璇 周健 《化工学报》 北大核心 2025年第1期93-106,共14页
离子液体对环境有潜在毒性,为了解其毒性机制,建立了三种传统机器学习(支持向量机,随机森林,多层感知机)和三种图神经网络(图注意力网络,消息传递神经网络,图卷积模型)模型,预测离子液体对大鼠IPC-81细胞等4种活生物体的毒性。凭借分子... 离子液体对环境有潜在毒性,为了解其毒性机制,建立了三种传统机器学习(支持向量机,随机森林,多层感知机)和三种图神经网络(图注意力网络,消息传递神经网络,图卷积模型)模型,预测离子液体对大鼠IPC-81细胞等4种活生物体的毒性。凭借分子结构信息,图卷积模型在4个数据集中的RMSE和MAE均最低,R^(2)均最高,因此,图卷积模型在预测离子液体毒性上更优越。同时,基于图卷积模型,建立毒性解释模型,从数据驱动上来分析原子基团对毒性的贡献。阳离子的芳香环和长烷基链会产生毒性,S^(+)、P^(+)、N^(+)、NH^(+)等原子基团会显著增强离子液体的毒性,而P^(-)、F、B^(-)、C等原子基团会有效降低离子液体的毒性。该发现可为快速筛选和开发更绿色低毒型离子液体提供理论依据。 展开更多
关键词 离子液体 毒性 机器学习 神经网络 模型 预测 可解释性
在线阅读 下载PDF
基于灰色神经网络的地铁牵引用电预测模型 被引量:1
13
作者 张军 王凯 +6 位作者 刘佳喜 李根 赵岩 王鹏 耿伟 张浩 陈欢 《城市轨道交通研究》 北大核心 2024年第7期16-20,26,共6页
[目的]为了提高列车运行效率,需对地铁牵引能耗进行监测,并建立相关能耗模型对地铁牵引能耗进行预测分析。[方法]介绍了灰色预测模型和BP(反向传播)神经网络的基本原理;以天津某典型地铁车站2021年6月的牵引日用电量数据为例,采用灰色... [目的]为了提高列车运行效率,需对地铁牵引能耗进行监测,并建立相关能耗模型对地铁牵引能耗进行预测分析。[方法]介绍了灰色预测模型和BP(反向传播)神经网络的基本原理;以天津某典型地铁车站2021年6月的牵引日用电量数据为例,采用灰色关联分析法筛选出与地铁牵引日用电量关联度大的影响因素,基于GM(1,1)灰色预测模型预测出短期牵引日用电量;将所筛选出的关联度大的影响因素、GM(1,1)灰色预测模型预测的短期牵引日用电量及相邻历史牵引日用电量数据,作为BP神经网络模型中的输入量进行训练,建立GM-BP灰色神经网络模型,并生成所需短期地铁牵引日用电量预测数据。[结果及结论]与传统GM(1,1)灰色预测模型和BP神经网络模型相比,通过GM-BP灰色神经网络模型预测的短期牵引日用电量预测误差有明显的改善,能够作为有效的地铁牵引能耗数据进行短期预测数据分析。 展开更多
关键词 地铁 牵引日用电预测 灰色神经网络
在线阅读 下载PDF
基于BP神经网络的易贡藏布河流含沙量预测模型研究
14
作者 武泽宇 宁家贤 高朋辉 《水电能源科学》 北大核心 2025年第7期78-80,56,共4页
准确预测河流泥沙含量及其变化趋势,对于河流管理、水资源利用及生态环境保护具有重要意义。为此,引入BP神经网络,基于易贡藏布水文站2013~2022年实测数据,构建了基于BP神经网络的含沙量预测模型,利用该模型预测了易贡藏布河流含沙量,... 准确预测河流泥沙含量及其变化趋势,对于河流管理、水资源利用及生态环境保护具有重要意义。为此,引入BP神经网络,基于易贡藏布水文站2013~2022年实测数据,构建了基于BP神经网络的含沙量预测模型,利用该模型预测了易贡藏布河流含沙量,并选取决定系数、平均绝对值误差、平均偏差、均方根误差评价模型的性能。结果表明,所提模型预测精度极高,R^(2)值远超0.98,误差指标均趋近于零,充分验证了该模型的有效性与准确性,为该流域未来含沙量预测工作提供了参考依据和科学指导。 展开更多
关键词 BP神经网络模型 易贡藏布河 含沙量预测 机器学习
在线阅读 下载PDF
基于深度神经网络的布鲁氏菌病风险预测模型的构建和验证
15
作者 刘思远 宋彪 +5 位作者 刘桂枝 王君 薛兰 苏杰 王宏利 沈欣 《中山大学学报(医学科学版)》 北大核心 2025年第4期700-707,共8页
【目的】采用深度神经网络算法构建布鲁氏菌病预测模型,提升布鲁氏菌病的早期发现效能。【方法】纳入2023年呼市职业病防治院收治的202例布鲁氏菌病患者与319例非布鲁氏菌病患者的临床资料,从中提取性别、年龄、血常规指标及临床诊断等... 【目的】采用深度神经网络算法构建布鲁氏菌病预测模型,提升布鲁氏菌病的早期发现效能。【方法】纳入2023年呼市职业病防治院收治的202例布鲁氏菌病患者与319例非布鲁氏菌病患者的临床资料,从中提取性别、年龄、血常规指标及临床诊断等数据进行分析。通过深度神经网络算法构建布鲁氏菌病预测模型,并通过十折交叉验证进行模型优化。模型性能评估指标包括灵敏度、假阴性率、特异度、假阳性率、准确率、阳性预测值、阴性预测值、F1分数、受试者工作特征曲线下面积(AUC)。经评估筛选出的最优模型,借助沙普利可加性解释(SHAP)方法进行解释,明确模型的决策逻辑与各特征的影响机制。【结果】数据可视化分析显示,布病组与非布病组数据差异不明显。经十折交叉验证筛选出最优模型展现出良好性能,灵敏度为85.3%、特异度为92.1%、准确率为89.5%、AUC为96.6%,95%CI(0.937,0.977)。SHAP方法解释模型发现年龄、血小板计数、血小板平均体积、嗜碱性粒细胞比例、红细胞分布宽度和绝对嗜碱细胞数,对布病发生具有显著影响。【结论】本研究构建的深度神经网络预测模型性能良好,能为布病早期诊断与防控提供可靠支持。同时,明确布病相关显著影响特征有助于进一步认识疾病发病机制,该模型未来有望在临床广泛推广。 展开更多
关键词 布鲁氏菌病 深度神经网络 血常规指标 沙普利可加性解释方法 风险预测模型
在线阅读 下载PDF
基于PSO-BP神经网络高速公路建设期碳排放预测方法
16
作者 赵全胜 李斐 +4 位作者 郭风爱 于建游 徐士钊 胡运朋 褚晓萌 《河北科技大学学报》 北大核心 2025年第3期312-321,共10页
为了解决高速公路建设期碳排放预测不精准的问题,提出了粒子群优化(particle swarm optimization,PSO)算法优化BP(back propagation)神经网络预测碳排放的方法。采用层次分析法(analytic hierarchy process,AHP)从工程长度层、工程建设... 为了解决高速公路建设期碳排放预测不精准的问题,提出了粒子群优化(particle swarm optimization,PSO)算法优化BP(back propagation)神经网络预测碳排放的方法。采用层次分析法(analytic hierarchy process,AHP)从工程长度层、工程建设层、能源消耗层与材料消耗层4个维度凝练出路线长度、路基长度、路面长度、隧道长度、桥涵长度、互通区长度、挖方量、填方量、柴油消耗量、水泥消耗量、碎石消耗量和钢筋消耗量12个关键指标;获取36个高速公路项目数据作为模型训练的实证样本,结合误差指标进行对比分析。结果表明,所得PSO-BP模型R2为0.974,BP模型R2为0.890,前者更接近于1;与生命周期法结果相比较,PSO-BP比未优化的BP与真实值之间偏差更小。划分的4个维度层和选择的12个关键指标使得在高速公路设计规划阶段即可预测得到建设期的碳排放,为高速公路的低碳建设提供了参考。 展开更多
关键词 道路工程其他学科 碳排放预测 PSO-BP神经网络 模型优化 因素分析
在线阅读 下载PDF
车辆急动度对神经网络油耗预测性能影响研究
17
作者 张立成 押境田 +1 位作者 彭琨 杨冉 《汽车安全与节能学报》 北大核心 2025年第1期117-126,共10页
为了研究精细驾驶行为对基于单个和混合神经网络的油耗模型预测性能的影响,选择车辆急动度(Jerk)作为神经网络训练输入的重要变量。采用长短期记忆网络(LSTM)、循环神经网络(RNN)、非线性自回归带外部输入模型(NARX)、广义回归神经网络(... 为了研究精细驾驶行为对基于单个和混合神经网络的油耗模型预测性能的影响,选择车辆急动度(Jerk)作为神经网络训练输入的重要变量。采用长短期记忆网络(LSTM)、循环神经网络(RNN)、非线性自回归带外部输入模型(NARX)、广义回归神经网络(GRNN)、卷积神经网络(CNN)、门控循环单元(GRU)、多层感知机(MLP)以及卷积神经-长短期记忆网络(CNN-LSTM)混合神经网络共8种典型神经网络模型,选取(速度,加速度)、(速度,加速度和Jerk)、(发动机转速)共3种输入参数组合,以及校园低速、城市中速和高速公路高速共3种速度工况,累计进行了69组实验。结果表明:相较其余6种单个神经网络模型,LSTM模型在各输入组合和各速度工况下的预测性能最好;CNN-LSTM混合模型的预测性能略优于LSTM模型。引入车辆急动度(Jerk)后,各神经网络油耗预测模型在各速度工况的预测性能都得到显著提高,其中,单个模型中,RMSE最高下降了43.2%(CNN网络,高速路况),RE最高下降了68.2%(LSTM网络,城市路况),R2最高提升了41.8%(NARX网络,城市路况);混合模型中,RMSE和RE分别最高下降了34.9%和61.0%(城市路况)。 展开更多
关键词 生态驾驶 油耗预测 神经网络模型 驾驶行为 车辆急动度(Jerk)
在线阅读 下载PDF
基于聚类SABO-VMD和组合神经网络的短期光伏发电功率预测 被引量:4
18
作者 冯建铭 希望·阿不都瓦依提 蔺红 《太阳能学报》 北大核心 2025年第2期357-366,共10页
针对光伏发电预测单一模型处于不同天气状况时预测精度不高等问题,建立以卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)为基础的组合神经网络模型。提出一种基于鱼鹰优化算法(OOA),用以优化组合神经网络参数。此外引入注意力机制(Atte... 针对光伏发电预测单一模型处于不同天气状况时预测精度不高等问题,建立以卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)为基础的组合神经网络模型。提出一种基于鱼鹰优化算法(OOA),用以优化组合神经网络参数。此外引入注意力机制(Attention)突出强相关性因素的影响。采用高斯混合模型聚类(GMM)划分历史光伏数据为数个天气类型,并提出基于减法平均的优化算法(SABO)优化变分模态分解(VMD)参数,实现对各天气类型数据的分解。实验结果表明:基于SABO-VMD优化数据分解参数能有效提高预测精度;经实验对比分析,该文所提模型精度明显更高。 展开更多
关键词 光伏功率 变分模态分解 神经网络 功率预测 注意力机制 高斯混合模型聚类
在线阅读 下载PDF
人工神经网络在塔里木河中游流量预测中的应用
19
作者 刘淇 张小莹 +2 位作者 李琳 孟万尚 谭义海 《水文》 北大核心 2025年第3期64-71,共8页
塔里木河中游河道岔道多、河水漫溢严重,为应对水文测站稀少且相距较远所引起的流量数据不足的问题,分别在定床与动床工况下提出了基于BP及RBF两种人工神经网络的塔里木河中游流量预测模型。结果表明:在定床工况下,两种预测模型均表现... 塔里木河中游河道岔道多、河水漫溢严重,为应对水文测站稀少且相距较远所引起的流量数据不足的问题,分别在定床与动床工况下提出了基于BP及RBF两种人工神经网络的塔里木河中游流量预测模型。结果表明:在定床工况下,两种预测模型均表现出较好的适应性,其中四变量(水深、水面宽、平均流速、水力半径)的预测模型准确性最高,模型准确度随着变量数量减少而下降;在动床工况下,BP预测模型准确性高于RBF模型;使用三变量及四变量训练的BP模型均能较好的预测流量,但三变量(水深、水面宽、平均流速)的数据获取更为便捷,方便使用。本研究可为塔里木河中游流量预测提供新思路,对河流管理、防洪减灾以及水资源合理配置具有实际意义。 展开更多
关键词 塔里木河 神经网络 流量 BP预测模型 RBF预测模型
在线阅读 下载PDF
基于TAGE与基于神经网络分支预测器的比较与分析
20
作者 郑伟巍 郑重 +1 位作者 陈微 陆洪毅 《计算机工程与科学》 北大核心 2025年第8期1364-1380,共17页
随着处理器性能需求的不断增长,超标量和深度流水线技术被广泛应用于现代微处理器中,从而提升指令执行的并行性。然而,程序中的条件分支指令对流水线的连续执行构成了挑战,限制了指令并行执行的能力。为解决这一控制冒险问题,分支预测... 随着处理器性能需求的不断增长,超标量和深度流水线技术被广泛应用于现代微处理器中,从而提升指令执行的并行性。然而,程序中的条件分支指令对流水线的连续执行构成了挑战,限制了指令并行执行的能力。为解决这一控制冒险问题,分支预测技术应运而生,其核心在于预先推测分支指令的跳转方向和地址,进而最小化因分支指令引起的流水线停顿延迟。基于统一的性能评估框架,对比分析了当前主流的基于TAGE的分支预测器和基于神经网络的分支预测器。实验结果表明,不同分支预测器对特定轨迹存在不同的偏好性,融合多种预测机制或可以进一步挖掘预测潜能。同时,执行任务上下文对分支预测性能的影响不容忽视,特别是在多进程环境中。此外,实验还发现当前CNN预测器在处理复杂分支时的性能不稳定,整体表现未能超越基准TAGE-SC-L预测器,仍需继续优化。 展开更多
关键词 分支预测 TAGE 神经网络 感知机 CNN模型
在线阅读 下载PDF
上一页 1 2 249 下一页 到第
使用帮助 返回顶部