期刊文献+
共找到823篇文章
< 1 2 42 >
每页显示 20 50 100
基于灰色神经网络组合模型的动态数据序列预测 被引量:10
1
作者 张弦 李世平 +1 位作者 孙浚清 唐超 《电子测量技术》 2007年第9期60-63,共4页
为了提高动态数据序列的预测精度,分析了现有BP神经网络和灰色预测方法各自的优缺点,并在此基础上建立了灰色神经网络组合模型。组合模型兼有BP神经网络和灰色预测的优点,弥补了单个模型的不足,既克服了数据波动性大对预测精度的影响,... 为了提高动态数据序列的预测精度,分析了现有BP神经网络和灰色预测方法各自的优缺点,并在此基础上建立了灰色神经网络组合模型。组合模型兼有BP神经网络和灰色预测的优点,弥补了单个模型的不足,既克服了数据波动性大对预测精度的影响,也增强了预测的自适应性。本方法利用灰色预测中的累加生成运算对原始数据进行变换,从而得到规律性较强的累加数据,便于神经网络进行建模和训练,并利用神经网络的函数逼近特性,实现对原始数据的预测。仿真结果表明:组合模型的预测精度高于单独的GM(1,1)模型,适用于具有复杂成分的动态数据序列的建模。 展开更多
关键词 动态数据序列 灰色预测 BP神经网络 灰色神经网络组合模型
在线阅读 下载PDF
灰色神经网络组合模型(GNN)在涝灾预测中的应用 被引量:5
2
作者 迟道才 张瑞 +1 位作者 张清 孙东昊 《沈阳农业大学学报》 CAS CSCD 北大核心 2008年第1期118-120,共3页
洪涝是对人类及社会危害较大的一种自然灾害,洪涝严重影响农业生产和生态平衡,涝灾预测已成为防灾减灾的重要内容。应用BP神经网络模型对灰色模型预测精度较低的问题进行了改进,该方法是将灰色模型的预测值作为神经网络的输入,以实际值... 洪涝是对人类及社会危害较大的一种自然灾害,洪涝严重影响农业生产和生态平衡,涝灾预测已成为防灾减灾的重要内容。应用BP神经网络模型对灰色模型预测精度较低的问题进行了改进,该方法是将灰色模型的预测值作为神经网络的输入,以实际值作为输出而构成灰色神经网络组合模型(GNN)。以辽阳地区50年的年降水量作为历史数据,建立GNN涝灾预测模型。预测结果表明:该方法与传统的灰色预测方法相比提高了预测精度,这种新的信息处理和预测方法是有效可行的。 展开更多
关键词 灰色模型 BP网络 涝灾预测 灰色神经网络组合模型
在线阅读 下载PDF
灰色神经网络组合模型在庆安县年降雨量预测中的应用 被引量:11
3
作者 任晔 徐淑琴 《节水灌溉》 北大核心 2012年第9期24-25,29,共3页
采用灰色神经网络对黑龙江省庆安县年降雨量进行预测建模,利用灰色GM(1.1)模型"贫信息"和神经网络非线性函数映射能力优秀的特性,避免了灰色GM(1.1)模型对预测拟合精度低的问题。结果表明灰色神经网络组合模型的平均相对误差... 采用灰色神经网络对黑龙江省庆安县年降雨量进行预测建模,利用灰色GM(1.1)模型"贫信息"和神经网络非线性函数映射能力优秀的特性,避免了灰色GM(1.1)模型对预测拟合精度低的问题。结果表明灰色神经网络组合模型的平均相对误差为0.012 2,高于灰色GM(1.1)模型的平均相对误差0.153 7,预测精度较高,并且算法简便,拓宽了灰色预测模型的应用范围。 展开更多
关键词 GM(1.1)灰色预测模型BP人工神经网络 灰色神经网络组合模型 年降雨量 预测
在线阅读 下载PDF
基于灰色神经网络组合模型的光伏短期出力预测 被引量:157
4
作者 王守相 张娜 《电力系统自动化》 EI CSCD 北大核心 2012年第19期37-41,共5页
光伏发电系统输出功率具有不确定性特征,为了减轻其对电网的影响,有必要进行光伏出力预测。文中提出了一种基于灰色神经网络组合模型的方法对光伏出力进行预测。该方法是对传统直接预测和间接预测方法的结合,考虑了影响光伏出力的主要因... 光伏发电系统输出功率具有不确定性特征,为了减轻其对电网的影响,有必要进行光伏出力预测。文中提出了一种基于灰色神经网络组合模型的方法对光伏出力进行预测。该方法是对传统直接预测和间接预测方法的结合,考虑了影响光伏出力的主要因素,通过统计与预测日相似天气条件下整点时刻的光伏出力,建立了各时刻出力的灰色模型,然后利用灰色模型的输出和温度数值与实测出力值建立神经网络预测模型,最终得到预测结果。文中采用实际光伏出力数据对灰色模型、神经网络模型、灰色神经网络组合模型3种预测方法进行了结果对比。算例结果表明,所提出的灰色神经网络组合预测模型能够更为精确地对光伏出力进行预测,因而具有潜在的应用价值。 展开更多
关键词 灰色模型 神经网络模型 光伏发电 功率预测 短期预测
在线阅读 下载PDF
用灰色神经网络组合模型预测农机总动力发展 被引量:32
5
作者 朱瑞祥 黄玉祥 杨晓辉 《农业工程学报》 EI CAS CSCD 北大核心 2006年第2期107-110,共4页
农机总动力的需求预测是一个复杂的非线形系统,其发展变化具有增长性和波动性。该文首先在灰色预测模型的基础上建立了新陈代谢型灰色预测模型群,然后结合灰色GM(1,1)模型和BP网络模型的优缺点,建立了串联新陈代谢型灰色神经网络组合预... 农机总动力的需求预测是一个复杂的非线形系统,其发展变化具有增长性和波动性。该文首先在灰色预测模型的基础上建立了新陈代谢型灰色预测模型群,然后结合灰色GM(1,1)模型和BP网络模型的优缺点,建立了串联新陈代谢型灰色神经网络组合预测模型,并对中国农机总动力需求进行了预测,结果表明预测值和实际结果有很好的一致性。 展开更多
关键词 农机总动力 灰色GM(1 1) 新陈代谢 BP网络 组合预测模型 预测分析
在线阅读 下载PDF
农村电子商务产业集群趋势预测研究——基于灰色神经网络组合模型 被引量:8
6
作者 张继国 乜鑫宇 龚艳冰 《商业经济研究》 北大核心 2017年第1期192-194,共3页
农村电子商务产业集群发展趋势的预测对于当地政府制定帮扶政策和战略规划具有重要意义。为更准确探究其发展变化趋势,本文从多角度选取指标,利用信息熵理论合成综合指标,构建了增长曲线模型、灰色模型、BP神经网络模型和灰色神经网络... 农村电子商务产业集群发展趋势的预测对于当地政府制定帮扶政策和战略规划具有重要意义。为更准确探究其发展变化趋势,本文从多角度选取指标,利用信息熵理论合成综合指标,构建了增长曲线模型、灰色模型、BP神经网络模型和灰色神经网络组合模型对其进行预测,实证分析表明灰色神经网络组合模型的预测精度优于单项预测模型,更适合于沙集电子商务产业集群发展趋势的预测。 展开更多
关键词 农村电子商务 灰色模型 BP神经网络模型 组合预测 沙集
在线阅读 下载PDF
蚁群灰色神经网络组合模型在电力负荷预测中的应用 被引量:26
7
作者 王捷 吴国忠 李艳昌 《电力系统保护与控制》 EI CSCD 北大核心 2009年第2期48-52,共5页
灰色GM(1,1)预测模型,在负荷预测中得到了广泛应用,但是也有其局限性。当数据灰度越大,预测精度越差,并且不太适合经济长期后推若干年的预测,在一定程度上是由模型中的参数a造成的,为此引入向量θ,建立蚁群灰色模型,然后与神经网络模型... 灰色GM(1,1)预测模型,在负荷预测中得到了广泛应用,但是也有其局限性。当数据灰度越大,预测精度越差,并且不太适合经济长期后推若干年的预测,在一定程度上是由模型中的参数a造成的,为此引入向量θ,建立蚁群灰色模型,然后与神经网络模型相组合,即建立蚁群灰色神经网络组合预测模型。实证分析表明,该预测方法是合理有效的,与传统的预测方法相比,提高了预测精度,具有较好的实用价值。 展开更多
关键词 负荷预测 GM(1 1) 蚁群算法 BP神经网络 蚁群灰色模型
在线阅读 下载PDF
基于改进灰色神经网络组合模型的光伏电站短期出力预测 被引量:17
8
作者 刘博洋 潘宇 +3 位作者 许伯阳 刘文 李焕奇 王苏 《广东电力》 2017年第4期55-60,共6页
针对单一灰色模型和神经网络模型自身的缺陷对传统灰色神经网络组合模型预测精度的影响问题,提出一种基于改进的灰色神经网络组合模型的光伏电站短期出力预测方法。通过把历史日最高和最低气温以及功率数据作为输入,将改进后的单一灰色... 针对单一灰色模型和神经网络模型自身的缺陷对传统灰色神经网络组合模型预测精度的影响问题,提出一种基于改进的灰色神经网络组合模型的光伏电站短期出力预测方法。通过把历史日最高和最低气温以及功率数据作为输入,将改进后的单一灰色模型和神经网络模型进行串联组合。采用粒子群优化算法对该组合模型的权值和阈值进行优化,得到改进的灰色神经网络组合模型,可实现提前一天功率预测。某光伏电站群的实测数据验证了该预测方法能够有效提高预测精度。 展开更多
关键词 光伏短期预测 灰色模型 神经网络模型 平滑处理 粒子群算法
在线阅读 下载PDF
灰色神经网络组合模型在区域水质预测中的应用 被引量:11
9
作者 邓婵 张新政 罗作煌 《科学技术与工程》 2009年第9期2457-2458,2483,共3页
针对神经网络用于水质预测时需要大量数据才能获得较为准确的预测结果的局限性,为降低预测时对数据的依赖引入灰色模型,从而建立两者最优组合模型,以用于数据贫瘠时的情况。将该模型用于珠江支流的水质预测,结果表明,该模型拟合误差小,... 针对神经网络用于水质预测时需要大量数据才能获得较为准确的预测结果的局限性,为降低预测时对数据的依赖引入灰色模型,从而建立两者最优组合模型,以用于数据贫瘠时的情况。将该模型用于珠江支流的水质预测,结果表明,该模型拟合误差小,预测精度高。 展开更多
关键词 水质预测 灰色模型 神经网络模型
在线阅读 下载PDF
基于灰色神经网络组合模型的故障预测 被引量:27
10
作者 黄魁 苏春 《系统工程与电子技术》 EI CSCD 北大核心 2020年第1期238-244,共7页
针对装备故障预测存在有效样本少、模型预测精度低等问题,集成灰色理论和神经网络方法,提出基于灰色神经网络的故障预测组合模型。基于新信息优先原理和重构背景值方法优化灰色GM(1,1)模型的初始值与背景值,利用Levenberg-Marquardt算... 针对装备故障预测存在有效样本少、模型预测精度低等问题,集成灰色理论和神经网络方法,提出基于灰色神经网络的故障预测组合模型。基于新信息优先原理和重构背景值方法优化灰色GM(1,1)模型的初始值与背景值,利用Levenberg-Marquardt算法改进反向传播神经网络模型;采用组合预测思想,将多方法融合改进灰色模型和神经网络模型,分别构建基于权重分配、基于误差修正和基于结构优化的3种灰色神经网络组合模型。以某雷达发射机的故障预测为例,验证上述方法在故障预测中的有效性。结果表明,灰色神经网络组合模型的预测精度优于单一预测模型,可用于装备的故障预测和预测性维修。 展开更多
关键词 故障预测 灰色模型 神经网络 组合模型
在线阅读 下载PDF
基于卷积神经网络与轻量级梯度提升树组合模型的电力行业短期以电折碳方法
11
作者 曾金灿 何耿生 +3 位作者 李姚旺 杜尔顺 张宁 朱浩骏 《上海交通大学学报》 北大核心 2025年第6期746-757,共12页
电力行业是碳排放的重点控排行业,准确、实时的电力行业碳排放计量是支撑其降碳减排的基础.目前,电力行业的碳排放计量主要基于实测法或核算法,难以很好地兼顾低计量成本与实时计量能力.为此,充分考虑电力行业良好的电力数据基础,挖掘电... 电力行业是碳排放的重点控排行业,准确、实时的电力行业碳排放计量是支撑其降碳减排的基础.目前,电力行业的碳排放计量主要基于实测法或核算法,难以很好地兼顾低计量成本与实时计量能力.为此,充分考虑电力行业良好的电力数据基础,挖掘电-碳间的相关关系,以电力历史数据为基础,基于机器学习方法提出一种电力行业短期以电折碳方法,实时估算电力行业短期碳排放情况.该方法使用卷积神经网络进行特征提取,并采用轻量级梯度提升树算法开展基于特征提取值的碳排放测算.此外,为了提升模型的泛化能力和鲁棒性,在模型训练中采用K折交叉验证技术,在模型参数优化过程中采用网格搜索技术.最后,为了验证所提模型的有效性,对比所提模型和其他机器学习模型在同等数据集划分条件下分别基于日度数据集与小时数据集中进行训练的效果.结果表明:所提模型在效果评估和测算值与目标值分布分析中均优于其他模型,能够较好地反映电力行业的短期碳排放情况. 展开更多
关键词 以电折碳 卷积神经网络 轻量级梯度提升树算法 碳排放 机器学习 组合模型
在线阅读 下载PDF
基于注意力循环神经网络的联合深度推荐模型 被引量:1
12
作者 郭东坡 何彬 +1 位作者 张明焱 段超 《现代电子技术》 北大核心 2025年第1期80-84,共5页
为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和... 为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和反向编码,获得隐藏状态输出,并将其输入双层注意力机制中,提取项目特征,利用全连接层提取用户偏好特征。在预测层中建立项目与用户的交互模型,获得项目评分,为用户推荐高评分的项目。为了提高模型精度,加权融合MSE损失函数、CE损失函数和RK损失函数建立组合损失函数,对深度联合训练模型展开训练,提高模型的推荐性能。仿真结果表明,所提方法具有良好的推荐效果,能够适应不断变化的市场需求和用户行为。 展开更多
关键词 双层注意力机制 循环神经网络 用户偏好 组合损失函数 交互模型 联合深度推荐模型
在线阅读 下载PDF
基于GM(1,1)与BP神经网络模型的西安市地下水位动态特征及趋势预测研究
13
作者 李培月 梁豪 +2 位作者 杨俊岩 田艳 寇晓梅 《西北地质》 北大核心 2025年第3期236-245,共10页
地下水是干旱与半干旱地区极其珍贵的自然资源,地下水动态的精准预测与评估关乎着地下水资源的有效保护与合理利用。本研究根据西安市2010~2020年地下水位监测数据,系统分析了西安市地下水位年际、年内动态变化特征,探究了影响地下水位... 地下水是干旱与半干旱地区极其珍贵的自然资源,地下水动态的精准预测与评估关乎着地下水资源的有效保护与合理利用。本研究根据西安市2010~2020年地下水位监测数据,系统分析了西安市地下水位年际、年内动态变化特征,探究了影响地下水位动态的主要因素,通过SPSS对影响地下水位动态的降水量和开采量两个主要因素进行相关性分析,并基于GM(1,1)灰度预测模型和BP神经网络模型对地下水位变动趋势进行了预测。结果表明:(1)2010~2016年,地下水位整体上呈下降趋势,2016~2020年间,得益于地下水压采和供水设施的不断优化完善,地下水位呈回升趋势。(2)降水和人为开采均对西安市地下水位变动具有显著影响;地下水位埋深是决定受降水影响程度的关键因素,其中河漫滩地区最为敏感,阶地次之,黄土塬区较弱。地下水开采量与地下水位埋深具有更强的相关性。这凸显了其在调控地下水位动态变化中的主导地位。(3)地下水位预测结果显示,随着地下水开采量呈现出逐年下降的趋势,研究区地下水整体处于波动上升趋势。本研究对西安市地下水动态的影响因素及预测趋势进行了研究,对地下水资源管理和可持续发展具有重要参考价值。 展开更多
关键词 地下水位动态 主导因素 回归分析 灰色模型 BP神经网络预测
在线阅读 下载PDF
基于灰色模型与神经网络组合的线损率预测 被引量:17
14
作者 张勤 周步祥 +1 位作者 林楠 聂雅卓 《电力系统及其自动化学报》 CSCD 北大核心 2013年第5期162-166,共5页
对线损率预测的方法进行了研究,采用灰色模型与神经网络组合的方法对线损率进行预测。首先用GM(1,1)建模对线损率的变化趋势分析计算,运用灰色关联度分析与线损率相关的因素,确定出神经网络的输入变量,建立线损率预测的3层BP网络模型;... 对线损率预测的方法进行了研究,采用灰色模型与神经网络组合的方法对线损率进行预测。首先用GM(1,1)建模对线损率的变化趋势分析计算,运用灰色关联度分析与线损率相关的因素,确定出神经网络的输入变量,建立线损率预测的3层BP网络模型;然后采用GM(1,1)和神经网络的组合预测模型得到线损率的最终预测结果;最后通过对实例的分析,证明所提方法提高了线损率预测的精度。 展开更多
关键词 线损率 预测 灰色模型 神经网络 组合模型
在线阅读 下载PDF
一种新的组合灰色神经网络预测模型 被引量:20
15
作者 许秀莉 罗键 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第2期164-167,共4页
对GM(1,1)灰色和几种灰色组合模型进行了讨论,针对多个相关序列预测的问题,提出了组合灰色GM(1,1)神经网络预测模型.此方法采用灰色模型对各序列进行预测,然后利用神经网络对预测值进行校正,得到最终预测值.实例表明此种模型在实际应用... 对GM(1,1)灰色和几种灰色组合模型进行了讨论,针对多个相关序列预测的问题,提出了组合灰色GM(1,1)神经网络预测模型.此方法采用灰色模型对各序列进行预测,然后利用神经网络对预测值进行校正,得到最终预测值.实例表明此种模型在实际应用中的确能够提高预测精度. 展开更多
关键词 BP神经网络 组合灰色神经网络预测模型 灰色系统理论 相关序列预测 组合预测 灰色GM(1 1)模型
在线阅读 下载PDF
具有二重趋势性的季节型电力负荷预测组合优化灰色神经网络模型 被引量:99
16
作者 牛东晓 陈志业 +1 位作者 邢棉 谢宏 《中国电机工程学报》 EI CSCD 北大核心 2002年第1期29-32,共4页
电力负荷预测是电力系统的一项重要工作 ,季节型电力负荷预测是一个难点 ,缺少相应的数量预测方法。对于具有增长和波动二重趋势性的季节型电力负荷 ,首次提出了季节型负荷预测的组合优化灰色神经网络模型 ,研究了同时考虑两种非线性趋... 电力负荷预测是电力系统的一项重要工作 ,季节型电力负荷预测是一个难点 ,缺少相应的数量预测方法。对于具有增长和波动二重趋势性的季节型电力负荷 ,首次提出了季节型负荷预测的组合优化灰色神经网络模型 ,研究了同时考虑两种非线性趋势的复杂季节型负荷预测问题 ,说明了此优基金项目 :国家自然科学基金资助项目 ( 5 0 0 770 0 7) ;国家电力公司重点学科基金资助项目 (A98B0 3)。ProjectSupportedbyNationalNaturalScienceFoundationofChina( 5 0 0 770 0 7) .化模型分别优于两种单一发展趋势负荷预测的模型。给出了电力负荷预测的应用实例 ,通过对河北电网季节最大负荷与销售电量的分析 ,建立了对应的组合优化灰色神经网络模型 ,与其它算法进行了比较 ,计算结果表明 ,该方法较大提高了季节型负荷预测的精度 ,为季节型电力负荷预测提供了一种新的、有效的方法 ,编制了季节型负荷预测的软件 。 展开更多
关键词 负荷预测 季节型负荷 组合灰色神经网络 电力系统
在线阅读 下载PDF
神经网络结合机器学习的煤与瓦斯突出量和危险性等级预测组合模型 被引量:1
17
作者 李江涛 王飞 《中国矿业》 北大核心 2024年第S02期176-184,共9页
准确预测煤与瓦斯突出危险性能够有效预防煤与瓦斯突出事故,保证煤矿的安全高效生产。为提高煤与瓦斯突出预测模型的准确性和普适性,提取BP神经网络最后一步隐藏层作为随机森林的输入特征,构建了BP神经网络结合随机森林的组合模型(BP-R... 准确预测煤与瓦斯突出危险性能够有效预防煤与瓦斯突出事故,保证煤矿的安全高效生产。为提高煤与瓦斯突出预测模型的准确性和普适性,提取BP神经网络最后一步隐藏层作为随机森林的输入特征,构建了BP神经网络结合随机森林的组合模型(BP-RF模型)。以60组煤与瓦斯突出工程数据集作为样本,采用平均误差、均方误差、危险等级预测精度和相关系数对模型进行了定量评价。研究结果表明:所建立的BP-RF模型对煤与瓦斯突出危险等级预测的准确率为99.9%,对煤与瓦斯突出量的预测准确率为94.87%。所建立了BP-RF模型性能优于BP、RF、IFOA-GRNN模型,精度较高。同时,根据所建立模型对所有特征的敏感性进行了分析,研究认为煤层深度、厚度煤层、地质构造变化、煤层厚度变化、煤层倾角变化、软层厚度变化、煤层软塌现象、煤层坚固系数变化、钻井动力学现象、气体释放初始速度对模型预测结果最为敏感,在煤矿实际开采过程中必须要高度重视。 展开更多
关键词 煤与瓦斯突出 BP神经网络 随机森林 组合模型 敏感性分析
在线阅读 下载PDF
证券市场灰色神经网络组合预测模型应用研究 被引量:11
18
作者 谭华 谢赤 +2 位作者 孙柏 储慧斌 闫瑞增 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第9期86-89,共4页
提出将3种灰色模型(残差GM(1,1),无偏GM(1,1)和pGM(1,1))与神经网络模型进行有机组合,建立一种新的灰色神经网络组合预测模型,并以中国股票市场上证指数为例进行模拟预测.实证表明:组合预测模型的模拟预测精度较原有方法更为精确,可作... 提出将3种灰色模型(残差GM(1,1),无偏GM(1,1)和pGM(1,1))与神经网络模型进行有机组合,建立一种新的灰色神经网络组合预测模型,并以中国股票市场上证指数为例进行模拟预测.实证表明:组合预测模型的模拟预测精度较原有方法更为精确,可作为股市预测的有效工具. 展开更多
关键词 神经网络 灰色理论 灰色神经网络 组合预测 证券市场
在线阅读 下载PDF
基于非等时距加权灰色模型与神经网络的组合预测算法 被引量:39
19
作者 韩晋 杨岳 +1 位作者 陈峰 李雄兵 《应用数学和力学》 CSCD 北大核心 2013年第4期408-419,共12页
非等时距预测算法在不等时间间隔序列的趋势分析与预测方面具有重要作用.在传统灰色预测理论的基础上,提出一种基于非等时距加权灰色模型和神经网络的组合预测算法.通过构建非等时距加权灰色预测模型,将原始数据序列的平均值作为累加序... 非等时距预测算法在不等时间间隔序列的趋势分析与预测方面具有重要作用.在传统灰色预测理论的基础上,提出一种基于非等时距加权灰色模型和神经网络的组合预测算法.通过构建非等时距加权灰色预测模型,将原始数据序列的平均值作为累加序列初值,将连续累积函数的积分面积作为背景值,对累加序列进行加权处理,以真实反映时间序列发展对预测结果的影响.在此基础上,引入BP神经网络对灰色预测的残差序列进行修正,进一步提高了预测精度.经算例验证,该算法预测精度达到1级,且高于类似算法. 展开更多
关键词 预测 非等时距 灰色模型 加权 神经网络 残差修正
在线阅读 下载PDF
基于BP神经网络和灰色关联度组合模型的城市生活垃圾清运量预测 被引量:24
20
作者 于涛 黄涛 +2 位作者 潘膺希 杨林海 王龙 《安全与环境学报》 CAS CSCD 北大核心 2013年第4期94-97,共4页
运用灰色关联度分析方法确定城市生活垃圾清运量主要影响因素,将其作为BP神经网络的输入向量,建立能满足兰州市生活垃圾清运量预测要求的BP神经网络预测模型。结果表明,兰州市城市生活垃圾清运量的主要影响因素为城市非农业人口、GDP、... 运用灰色关联度分析方法确定城市生活垃圾清运量主要影响因素,将其作为BP神经网络的输入向量,建立能满足兰州市生活垃圾清运量预测要求的BP神经网络预测模型。结果表明,兰州市城市生活垃圾清运量的主要影响因素为城市非农业人口、GDP、社会消费品零售总额、城市居民人均消费性支出和城市居民人均年可支配收入。建立了城市生活垃圾清运量BP神经网络预测模型,将模型的预测结果与实际值相比较,证明模型具有较好的可行性和适用性。从2009年至2015年,兰州市城市生活垃圾清运量的增长率达到42.78%,并在2015年达到171.51万t。灰色关联度分析能够较好地为建立BP神经网络预测模型筛选输入变量。 展开更多
关键词 环境工程学 生活垃圾 灰色关联度 BP神经网络 预测模型
在线阅读 下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部