期刊文献+
共找到4,031篇文章
< 1 2 202 >
每页显示 20 50 100
集成灰色支持向量机预测模型研究与应用 被引量:12
1
作者 林耀进 周忠眉 吴顺祥 《计算机应用》 CSCD 北大核心 2009年第12期3287-3289,共3页
对灰色预测GM(1,1)模型进行了分析,提出了集成灰色支持向量机的预测模型。分别对影响灰色预测GM(1,1)模型精度的背景值的计算、初值的选取以及数据序列的光滑度进行改进,提出了背景GM模型、初值GM模型、光滑度GM模型,并结合支持向量机... 对灰色预测GM(1,1)模型进行了分析,提出了集成灰色支持向量机的预测模型。分别对影响灰色预测GM(1,1)模型精度的背景值的计算、初值的选取以及数据序列的光滑度进行改进,提出了背景GM模型、初值GM模型、光滑度GM模型,并结合支持向量机的特点,将一维原始数据序列通过三个灰色模型得到的三组值作为支持向量机的输入,原始序列作为支持向量机的输出,训练得到最佳支持向量回归机模型。仿真结果表明了该模型的有效性。 展开更多
关键词 灰色系统 支持向量 预测
在线阅读 下载PDF
基于优化的支持向量机模型评估和预测社会-生态系统脆弱性——以陕南秦巴山区为例 被引量:1
2
作者 李润阳 陈佳 +3 位作者 杨新军 尹莎 徐俐 白玉玲 《生态学报》 北大核心 2025年第5期2281-2297,共17页
随着人类活动干扰不断加剧,促使我国山区人地关系发生了重大变化,从社会⁃生态系统视角动态评估和预测秦巴山区社会⁃生态系统脆弱性(SESV)的演化与特征,对实现我国山区生态保护与高质量发展具有重要的实践意义。利用空间显式脆弱性模型模... 随着人类活动干扰不断加剧,促使我国山区人地关系发生了重大变化,从社会⁃生态系统视角动态评估和预测秦巴山区社会⁃生态系统脆弱性(SESV)的演化与特征,对实现我国山区生态保护与高质量发展具有重要的实践意义。利用空间显式脆弱性模型模型,将SESV分解为暴露风险、敏感性和适应能力三个维度共48个指标,定量评估了2000—2020年陕南秦巴山区SESV及其各维度的空间分布特征,随后构建支持向量机模型,通过对比三种算法优化后的模型精度选取最优模型并预测2020—2050年陕南秦巴山区SESV及其各维度的时空分布和演化特征。结果显示:①陕南秦巴山区的SESV整体处于中低脆弱水平,在空间上呈现“中部高,南北低”的分布格局。②粒子群算法优化的支持向量机模型的准确性最优,且选取合适的训练样本数量能进一步改善预测性能。③预测结果显示,陕南秦巴山区SESV得到了显著降低,社会⁃生态系朝着良好态势发展。其中,暴露风险与SESV具有趋同性且地区间的差异变小,敏感性与适应能力维度均呈现“西高东低”的态势但地区间的差异并未缓解。研究旨在通过中国山区典型案例分析为SESV评估与预测提供参考依据。 展开更多
关键词 社会⁃生态系统 脆弱性 支持向量模型 优化算法 陕南秦巴山区
在线阅读 下载PDF
基于优化支持向量回归机的气浮单元水质预测模型
3
作者 陈霖 晏欣 +4 位作者 唐智和 冉照宽 李斌莲 栾辉 陈春茂 《工业水处理》 北大核心 2025年第5期157-165,共9页
为解决炼化污水处理系统气浮单元出水水质获取时滞严重的问题,构建了基于支持向量回归机(SVR)的气浮单元水质预测模型,利用皮尔逊相关系数(PCC)、斯皮尔曼相关系数(SCC)以及平均影响值算法(MIV)对模型输入参数进行降维,在此基础上利用... 为解决炼化污水处理系统气浮单元出水水质获取时滞严重的问题,构建了基于支持向量回归机(SVR)的气浮单元水质预测模型,利用皮尔逊相关系数(PCC)、斯皮尔曼相关系数(SCC)以及平均影响值算法(MIV)对模型输入参数进行降维,在此基础上利用交叉验证算法(K-CV)和网格搜索算法(GSA)对模型进行参数优化。结果表明,气浮单元出水COD和进水NH_(3)-N相关性最强,去除冗余变量,将NH_(3)-N作为模型输入可以有效提升模型预测精度。当惩罚因子c趋近于1,核函数参数g趋近于2000时,模型预测均方误差(MSE)最小(MSE=0.00067),预测精度最高;优化后SVR模型决定系数(R^(2))和相关性系数(r)分别为0.69和0.85,平均绝对百分比误差(MAPE)为0.05,预测精度远高于传统SVR和经典BP-ANN模型。现场验证结果表明该模型能实现对气浮单元出水水质的有效预测,平均百分比误差<5%,预测时间<1 min,极大程度提高了水质数据的时效性。 展开更多
关键词 炼化企业 污水处理系统 气浮单元 支持向量回归 水质预测模型
在线阅读 下载PDF
基于红狐优化支持向量机回归的船舶备件预测
4
作者 孟冠军 杨思平 钱晓飞 《合肥工业大学学报(自然科学版)》 北大核心 2025年第1期25-31,共7页
针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐... 针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。 展开更多
关键词 船舶备件预测 红狐优化算法(RFO) 支持向量回归(SVR) 精英反向学习
在线阅读 下载PDF
基于贝叶斯优化支持向量回归的煤自燃温度预测模型
5
作者 杨海燕 胡新成 +1 位作者 蔡佳文 余照阳 《工矿自动化》 北大核心 2025年第7期36-43,51,共9页
针对传统煤自燃温度预测模型未考虑指标气体与温度数据之间存在多重共线性、模型预测精度不足问题,提出了一种基于贝叶斯优化(BO)算法改进支持向量回归(SVR)超参数(BO-SVR)的煤自燃温度预测模型。利用煤自燃程序升温实验,对生成的指标... 针对传统煤自燃温度预测模型未考虑指标气体与温度数据之间存在多重共线性、模型预测精度不足问题,提出了一种基于贝叶斯优化(BO)算法改进支持向量回归(SVR)超参数(BO-SVR)的煤自燃温度预测模型。利用煤自燃程序升温实验,对生成的指标气体数据进行收集与处理。利用Spearman相关性分析选择与煤温相关性较强的指标气体并分析指标气体生成量间的共线性;对选择的指标气体进行主成分分析,解决多重共线性问题的同时降低维数;采用5折交叉验证方法划分训练集和测试集,通过平均绝对误差(MAE)、均方根误差(RMSE)和判定系数(R^(2))指标,对BO-SVR模型的性能与SVR、粒子群优化SVR(PSO-SVR)和遗传算法优化SVR(GA-SVR)模型进行定量评价。结果表明,BO-SVR模型的MAE较其他3种模型分别降低了74.2%,36.7%和10.2%,RMSE分别降低了71.9%,33.3%和11.4%,R^(2)达0.9885,高于其他模型。选取山西煤炭进出口集团河曲旧县露天煤业有限公司的烟煤煤样开展平行试验,BO-SVR模型在新数据集上的MAE为4.9279℃,RMSE为6.4899℃,R^(2)达0.9853,与原数据集预测结果保持高度一致性。表明BO-SVR模型具有较好的泛化性、预测精度和鲁棒性,有助于提高预测煤自燃温度的准确性。 展开更多
关键词 煤自燃 贝叶斯优化 支持向量回归 指标气体 预测模型
在线阅读 下载PDF
基于卷积神经网络与支持向量机的适配器落点预测方法
6
作者 苏政宇 杨宝生 +3 位作者 杨婧 唐静楠 姜毅 邓月光 《兵工学报》 北大核心 2025年第2期91-102,共12页
针对发射过程适配器落点预测算法存在的求解时间长、耗费资源多等问题,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)与支持向量机(Support Vector Machine,SVM)算法的适配器落点预测模型。基于欧拉角描述建立发射过程... 针对发射过程适配器落点预测算法存在的求解时间长、耗费资源多等问题,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)与支持向量机(Support Vector Machine,SVM)算法的适配器落点预测模型。基于欧拉角描述建立发射过程适配器动力学运动模型,并通过四阶龙格库塔法对适配器运动轨迹进行数值求解,获得大量的适配器运动状态参数和落点信息;提出CNN-SVM的适配器落点预测模型,采用Adam优化器优化CNN网络性能,并通过网格搜索法获得SVM最佳的超参数。研究结果表明:CNN-SVM模型对适配器落点预测具有较好的求解精度和较强的泛化性能,其训练集和测试集的R 2值均大于0.99,同时该模型的平均绝对误差均小于0.1 m;在相同的计算资源且满足任务预测精度的条件下,其求解时间仅为传统数值积分方法的8.5%。该模型在实际应用中具备显著的优势,为发射过程中适配器分离落点快速预测提供了一种有效的解决方案。 展开更多
关键词 落点预测 适配器 卷积神经网络 支持向量
在线阅读 下载PDF
基于模糊支持向量机的光纤通信网络攻击辨识数学模型
7
作者 温新苗 黄红芳 董晓菲 《激光杂志》 北大核心 2025年第7期161-167,共7页
面对网络攻击手段的不断演变和升级,传统识别方法难以应对日益复杂的网络安全问题,导致经常出现错误辨识的现象。针对上述问题,研究一种基于模糊支持向量机的光纤通信网络攻击辨识数学模型。对光纤通信信号实施去噪处理,分离噪声和源信... 面对网络攻击手段的不断演变和升级,传统识别方法难以应对日益复杂的网络安全问题,导致经常出现错误辨识的现象。针对上述问题,研究一种基于模糊支持向量机的光纤通信网络攻击辨识数学模型。对光纤通信信号实施去噪处理,分离噪声和源信号。从源信号中提取占空比特征、频率中心特征和能量占比特征。以特征来描述训练样本,通过训练样本训练模糊支持向量机,构建光纤通信网络攻击辨识数学模型。结果表明,应用该模型后,不同类别的类内密度更高,均达到0.8以上,说明模型更容易将样本正确分类,从而减少了类内误分类的可能性,且该模型得到的辨识结果与真实值的一致性非常高。 展开更多
关键词 模糊支持向量 光纤通信网络 攻击类型 特征提取 辨识数学模型
在线阅读 下载PDF
基于最小二乘支持向量机和车辆荷载监测数据的悬索桥吊索疲劳寿命预测 被引量:1
8
作者 曾国良 邓扬 《桥梁建设》 北大核心 2025年第1期41-48,共8页
针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数... 针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数据的相关性模型,建模过程中考虑LSSVM模型输入与输出的最优模式以及训练数据长度;建立1根吊索(以29号吊索为例)与其它吊索的日疲劳损伤之间的相关性模型,预测其它吊索的疲劳损伤;考虑日车流量和等效车总重的增长,进行吊索疲劳寿命预测。结果表明:对于29号吊索的4种LSSVM模型,模型Ⅳ的边界条件较其它3种模型更为合理,测试数据的平均相对误差低于模型Ⅰ~Ⅲ;该方法将日疲劳损伤与车辆荷载监测数据进行直接关联;LSSVM相关性模型的预测能力依赖于训练样本的数量,当训练数据长度为284 d时,模型Ⅳ的预测能力较强,其平均相对误差低于5.5%;同时考虑日车流量和等效车总重增长时,疲劳累积损伤显著增长。 展开更多
关键词 悬索桥 吊索 结构健康监测 车辆荷载 疲劳损伤 疲劳寿命 最小二乘支持向量 相关性模型
在线阅读 下载PDF
基于半监督学习结合最小二乘支持向量机的蝴蝶兰生长期最佳环境模型构建
9
作者 陈俞帆 白芮羽 +3 位作者 陈邦云 王华 敬勇 李亚硕 《农业工程》 2025年第4期38-42,共5页
蝴蝶兰是重要的观赏植物,生长环境对其生长发育具有显著影响。传统栽培方法多依赖经验,缺乏科学性和精准性。收集蝴蝶兰生长过程中的环境参数和生长状态指标,筛选关键特征,采用半监督学习结合最小二乘支持向量机方法,训练深度学习模型... 蝴蝶兰是重要的观赏植物,生长环境对其生长发育具有显著影响。传统栽培方法多依赖经验,缺乏科学性和精准性。收集蝴蝶兰生长过程中的环境参数和生长状态指标,筛选关键特征,采用半监督学习结合最小二乘支持向量机方法,训练深度学习模型用于预测蝴蝶兰生长最佳环境条件。通过自学习方法,模型能够从大量未标记样本中筛选出置信度高的样本,增加训练样本数量,提高模型的泛化能力和预测准确性。试验结果表明,当概率阈值设置为97%时,模型准确性最高,均方根误差3.974、决定系数0.975。该模型可为蝴蝶兰的科学栽培提供新的解决方案。 展开更多
关键词 半监督学习 最小二乘支持向量 环境模型 蝴蝶兰 智慧农业
在线阅读 下载PDF
中国冬季降水的支持向量机预测模型研究 被引量:1
10
作者 姚晨伟 杨子寒 +3 位作者 白慧敏 吴银忠 龚志强 封国林 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第10期3670-3685,共16页
我国冬季降水对于农业、水资源管理和自然灾害风险评估具有重要意义.受多种气象因素的影响,冬季降水的预测仍具有挑战性,进一步提升冬季降水的预测技巧是当下短期气候预测研究的重要课题.本研究采用支持向量机(SVM)方法,旨在通过机器学... 我国冬季降水对于农业、水资源管理和自然灾害风险评估具有重要意义.受多种气象因素的影响,冬季降水的预测仍具有挑战性,进一步提升冬季降水的预测技巧是当下短期气候预测研究的重要课题.本研究采用支持向量机(SVM)方法,旨在通过机器学习方法提高中国冬季降水的预测准确率.基于NCEP_CFS,ECMWF_SYSTEM,BCC_CSM等五个模式数据以及站点数据,建立针对冬季降水的SVM集成预测模型,并与单个模式和等权集合平均模型(AVE)加以对比.SVM模型因其强泛化和处理非线性问题的能力,在中国冬季降水预测中表现良好.研究表明:(1)SVM模型较单个模式及AVE模型的预测准确性与稳定性得到大幅提升,SVM模型的PS评分和PCS评分显著高于单个成员模式的结果,最大分别提高了8.0(12.6%)和3.9(7.4%),较AVE模型则最大分别提高了5.4(8.2%)和2.1(3.8%),预报技巧的提高在观测资料相对缺乏的西南和西北地区尤为明显.(2)从均方根误差和时间相关系数的空间分布上来看,SVM模型对其成员模式在西藏地区、西南地区、华东及华南地区误差较大的情况改善明显,误差最大降低了259(90.9%),预报技巧最大提高了1.13.(3)独立样本检验中,SVM模型的PS评分和PCS评分显著高于单个模式和AVE模型,最大提高了10.79(20.3%)和11.39(27.3%).因此,SVM模型的构建,将有助于进一步提高中国冬季降水预测的准确性和稳定性,为气象防灾减灾和气候资源开发利用等提供重要技术支撑. 展开更多
关键词 降水 支持向量 等权集合平均模型 集成预测
在线阅读 下载PDF
基于支持向量机与改进高斯过程混合模型的车用电池容量预测方法 被引量:4
11
作者 李雨佳 欧阳权 +2 位作者 刘灏仪 祝铭烨 王志胜 《电气工程学报》 CSCD 北大核心 2024年第1期87-96,共10页
基于数据驱动的容量预测有助于锂电池健康管理以延长其使用寿命。然而,目前大多数相关方法基于实验室数据展开,无法反映实际复杂工况下车用电池老化特性。因此,本文利用电动汽车实车数据,设计了一种基于支持向量机与改进高斯过程的混合... 基于数据驱动的容量预测有助于锂电池健康管理以延长其使用寿命。然而,目前大多数相关方法基于实验室数据展开,无法反映实际复杂工况下车用电池老化特性。因此,本文利用电动汽车实车数据,设计了一种基于支持向量机与改进高斯过程的混合模型,实现了车用电池容量的精确预测。首先从汽车实时运行数据集中利用滑动窗口安时积分法提取其容量数据,设计了集合经验模态分解方法,将电池容量分为长期退化趋势和短期波动两部分,然后分别设计支持向量机与改进高斯过程对这两个分量进行建模,将结果融合得到最终的容量预测值。基于三辆实车数据集的试验结果表明,所提出的方法可以适用于实车数据的高精度容量预测。 展开更多
关键词 实车数据 容量预测 支持向量 改进高斯过程
在线阅读 下载PDF
基于灰色支持向量机的输电线路覆冰厚度预测模型 被引量:18
12
作者 马小敏 高剑 +4 位作者 吴驰 何锐 龚奕宇 李熠 吴天宝 《中国电力》 CSCD 北大核心 2016年第11期46-50,共5页
为了降低输电线路覆冰事故对电网安全造成的严重影响,对输电线路覆冰厚度进行预测将能够有效地指导电网抗冰工作。提出了基于灰色支持向量机的输电线路覆冰厚度短期预测模型,分析了样本中脏数据的剔除及数据预处理方法,通过模型预测值... 为了降低输电线路覆冰事故对电网安全造成的严重影响,对输电线路覆冰厚度进行预测将能够有效地指导电网抗冰工作。提出了基于灰色支持向量机的输电线路覆冰厚度短期预测模型,分析了样本中脏数据的剔除及数据预处理方法,通过模型预测值与实测数据的对比验证了该模型的准确性和适用性,根据模型预测的线路最大覆冰厚度值对现场观冰、冰情预警以及开展交直流融冰提供策略指导。将该模型与传统的支持向量机和广义回归神经网络覆冰预测模型进行了对比,结果表明,该模型平均误差为0.325 mm,平均绝对百分误差仅为2.61%,适用于输电线路覆冰厚度短期预测。在易覆冰地区,应用该预测模型能够更好地指导输电线路抗冰工作。 展开更多
关键词 覆冰 输电线路 短期预测 灰色模型 支持向量模型 在线监测
在线阅读 下载PDF
基于支持向量机的变压器碳排放预测模型 被引量:3
13
作者 陈远东 孟辉 +5 位作者 李猛克 张海龙 张超 梁伟 韩钰 姬军 《包装工程》 CAS 北大核心 2024年第1期254-261,共8页
目的解决变压器中主要设计参数影响下的碳排放量预测问题。方法本文利用随机森林(Random Forest,RF)算法和支持向量机(Support Vector Machine,SVM)算法进行对比,构建一个变压器碳排放预测模型。结果通过对变压器的全生命周期进行评价,... 目的解决变压器中主要设计参数影响下的碳排放量预测问题。方法本文利用随机森林(Random Forest,RF)算法和支持向量机(Support Vector Machine,SVM)算法进行对比,构建一个变压器碳排放预测模型。结果通过对变压器的全生命周期进行评价,确定铁芯的长宽比为影响碳排放量的主要因素,对给定参数下的碳排放量进行预测,并与实际值进行对比分析得出,3类预测模型中,SVM高斯核模型的平均绝对误差值约为5.37,与碳排放实际值最为接近,故采用高斯核函数的非线性支持向量机预测模型最优。结论证明支持向量机高斯核函数预测模型更具有预测准确性和有效性,以期能为生产企业进行低碳设计提供参考依据,为电力行业生产设备的可持续设计研究提供一定的借鉴意义。 展开更多
关键词 碳排放预测 变压器 支持向量算法 森林算法
在线阅读 下载PDF
基于灰色支持向量机组合模型的我国火电NO_x排放量预测 被引量:6
14
作者 赵毅 周建国 梁怀涛 《环境科学研究》 EI CAS CSCD 北大核心 2011年第5期489-496,共8页
区域火电NOx排放量的预测属于小样本、贫信息的灰色系统.由于NOx排放量受多个因素的叠加性影响,单一预测模型难以准确反映NOx排放量的复杂变化,易产生较大的预测误差.基于此,利用灰色预测理论和支持向量机预测理论,建立了火电NOx排放量... 区域火电NOx排放量的预测属于小样本、贫信息的灰色系统.由于NOx排放量受多个因素的叠加性影响,单一预测模型难以准确反映NOx排放量的复杂变化,易产生较大的预测误差.基于此,利用灰色预测理论和支持向量机预测理论,建立了火电NOx排放量组合优化预测模型.采用国家权威部门发布的火电NOx排放量数据,综合考虑影响我国火电NOx排放量的主要因素,对我国2008—2010年以及2020年的火电NOx排放量进行了预测,预测结果与官方公布的实际值基本一致;同时,预测的时间大大缩短. 展开更多
关键词 NOX排放量 灰色预测模型 支持向量 组合预测模型
在线阅读 下载PDF
基于灰色支持向量机模型的滚动轴承故障诊断与预测方法 被引量:6
15
作者 王建华 亢太体 +2 位作者 刘志峰 赵成斌 谷力超 《北京工业大学学报》 CAS CSCD 北大核心 2015年第11期1693-1698,共6页
提出基于GM(1,1)-SVM的滚动轴承故障诊断及预测方法.首先,提取滚动轴承各类故障和正常状态下振动信号的时域及频域特征值,然后,选取重要特征参数建立预测模型,进行特征值预测;最后,使用轴承各类故障特征值和正常状态特征值训练二叉树支... 提出基于GM(1,1)-SVM的滚动轴承故障诊断及预测方法.首先,提取滚动轴承各类故障和正常状态下振动信号的时域及频域特征值,然后,选取重要特征参数建立预测模型,进行特征值预测;最后,使用轴承各类故障特征值和正常状态特征值训练二叉树支持向量机,构造滚动轴承决策树,判别故障,实现对故障类型的分类,从而达到对轴承故障诊断,并通过预测值与支持向量机实现故障预测的目的,突破传统算法不能有效预测轴承故障的局限性. 展开更多
关键词 滚动轴承 灰色模型 支持向量 故障诊断 故障预测
在线阅读 下载PDF
基于遗传支持向量机的多维灰色变形预测模型研究 被引量:14
16
作者 罗亦泳 张豪 张立亭 《浙江工业大学学报》 CAS 北大核心 2010年第1期79-83,共5页
多维灰色模型适合对多因素影响下的贫信息系统问题进行建模,但对多因素影响下的非线性变形系统建模和预测精不高,针对该问题进行分析研究.利用支持向量机算法建立多维灰色变形预测模型的残差与变形影响因素之间的非线性关系,对多维灰色... 多维灰色模型适合对多因素影响下的贫信息系统问题进行建模,但对多因素影响下的非线性变形系统建模和预测精不高,针对该问题进行分析研究.利用支持向量机算法建立多维灰色变形预测模型的残差与变形影响因素之间的非线性关系,对多维灰色变形预测模型的残差进行预测,并与多维灰色变形预测模型相加,对多维灰色变形预测模型进行修正,构建基于支持向量机的多维灰色变形预测模型.利用遗传算法优化支持向量机模型参数,提高支持向量机建模精度.该方法较好地解决了多维灰色变形预测模型精度不高的问题.把该模型应用于大坝变形预测,并与多种传统变形预测方法进行对比,结果证实该方法有效提高多维灰色变形预测模型的精度,且新模型精度远优于传统方法,是一种新的有效的变形预测模型. 展开更多
关键词 支持向量 遗传算法 多维灰色模型
在线阅读 下载PDF
基于支持向量机补偿的灰色模型网络流量预测 被引量:9
17
作者 钱渊 宋军 傅珂 《探测与控制学报》 CSCD 北大核心 2012年第1期69-72,79,共5页
针对网络测量与控制技术中提高流量预测准确性的问题,提出基于支持向量机残差补偿的灰色模型网络流量预测模型。该模型采用灰色模型进行趋势预测,支持向量机进行残差序列预测,实现残差补偿。实验结果表明:该模型具有预测模型样本小,预... 针对网络测量与控制技术中提高流量预测准确性的问题,提出基于支持向量机残差补偿的灰色模型网络流量预测模型。该模型采用灰色模型进行趋势预测,支持向量机进行残差序列预测,实现残差补偿。实验结果表明:该模型具有预测模型样本小,预测精度高等优点,适合于网络流量预测。 展开更多
关键词 灰色模型 支持向量 网络流量 残差序列 补偿 预测精度
在线阅读 下载PDF
基于随机森林与支持向量机的热轧带钢凸度加权预测模型研究
18
作者 周亚罗 李子轩 +2 位作者 张少川 刘文广 张瑞成 《矿冶工程》 CAS 北大核心 2024年第6期144-150,共7页
针对传统带钢凸度预测方法预测精度低、速度慢的问题,建立了基于随机森林和支持向量机的热轧带钢凸度加权预测模型。采用改进长鼻浣熊算法分别对随机森林、支持向量机和随机森林与支持向量机加权预测模型的参数进行优化,提高凸度预测精... 针对传统带钢凸度预测方法预测精度低、速度慢的问题,建立了基于随机森林和支持向量机的热轧带钢凸度加权预测模型。采用改进长鼻浣熊算法分别对随机森林、支持向量机和随机森林与支持向量机加权预测模型的参数进行优化,提高凸度预测精度。以某公司热轧1 580 mm生产线实测数据进行凸度预测仿真研究,随机森林与支持向量机加权预测模型的均方根误差为2.23μm,与随机森林模型、支持向量机模型预测精度进行比较,加权预测模型的精度分别提高了7.08%、2.62%。 展开更多
关键词 凸度预测 热轧带钢 支持向量 长鼻浣熊算法 凸度 森林
在线阅读 下载PDF
京津冀城市可持续发展效率预警研究——基于灰色支持向量机回归模型的预测 被引量:6
19
作者 何砚 郭泰 方方 《生态经济》 北大核心 2020年第9期95-100,共6页
选用支持向量机回归模型与灰色GM(1,1)模型组合方式对2020—2022年京津冀城市可持续发展效率各项测度指标值进行了预测,先将所得指标预测值代入超效率CCR-DEA模型,从而得到2020—2022年京津冀城市可持续发展效率的预测值,再将预测值及... 选用支持向量机回归模型与灰色GM(1,1)模型组合方式对2020—2022年京津冀城市可持续发展效率各项测度指标值进行了预测,先将所得指标预测值代入超效率CCR-DEA模型,从而得到2020—2022年京津冀城市可持续发展效率的预测值,再将预测值及其均值与2012—2019年的实测值及其均值进行比较,得以判断预测期京津冀城市可持续发展状态。预警判断结果实现了与京津冀城市可持续发展现状及该区域内若干发展政策的相互印证,从而印证了文章所提供的研究框架和预警建模方法的可信性。文章不仅丰富了城市可持续发展效率预警研究文献,而且有助于深入理解京津冀协同发展战略。 展开更多
关键词 京津冀 城市可持续发展效率 预警 灰色支持向量回归模型
在线阅读 下载PDF
基于灰色支持向量机的网络舆情预测模型 被引量:22
20
作者 曾振东 《计算机应用与软件》 CSCD 北大核心 2014年第2期300-302,311,共4页
为了提高网络舆情预测精度,建立一种基于灰色支持向量机的网络舆情预测模型。首先对网络舆情数据预处理,然后建立网络舆情的GM(1,1)模型,并采用支持向量机对GM(1,1)模型的预测结果修正,最后通过仿真实验对模型性能进行测试。仿真结果表... 为了提高网络舆情预测精度,建立一种基于灰色支持向量机的网络舆情预测模型。首先对网络舆情数据预处理,然后建立网络舆情的GM(1,1)模型,并采用支持向量机对GM(1,1)模型的预测结果修正,最后通过仿真实验对模型性能进行测试。仿真结果表明,相对于传统预测模型,灰色支持向量机提高了网络舆情的预测精度。 展开更多
关键词 网络舆情 灰色模型 支持向量 预测
在线阅读 下载PDF
上一页 1 2 202 下一页 到第
使用帮助 返回顶部