期刊文献+
共找到1,040篇文章
< 1 2 52 >
每页显示 20 50 100
基于灰狼算法优化极限学习机的中介轴承故障诊断方法 被引量:6
1
作者 栾孝驰 张席 +1 位作者 沙云东 徐石 《推进技术》 EI CAS CSCD 北大核心 2024年第4期190-200,共11页
针对中介轴承故障振动信号具有传递路径复杂、强背景噪声干扰等特点,其故障特征不易提取的问题,提出基于自适应噪声完全经验模态分解(CEEMDAN)与灰狼算法(GWO)优化的极限学习机(ELM)相结合的中介轴承故障诊断方法。利用CEEMDAN和相关系... 针对中介轴承故障振动信号具有传递路径复杂、强背景噪声干扰等特点,其故障特征不易提取的问题,提出基于自适应噪声完全经验模态分解(CEEMDAN)与灰狼算法(GWO)优化的极限学习机(ELM)相结合的中介轴承故障诊断方法。利用CEEMDAN和相关系数-能量比-峭度准则(CEKC)对振动信号进行分解、筛选、重构;再提取重构信号的时域和频域特征构成特征矩阵;然后以平均错误率作为GWO的适应度值,对ELM的输入层与隐含层的权值和隐含层阈值进行优化后重新构建ELM;最后将特征矩阵输入ELM得到故障诊断结果。应用于中介轴承故障诊断中,ELM在GWO优化后故障诊断正确率有明显提升,其中45°方向传感器数据正确率由93.33%提升到99.17%。结果表明:该方法能够有效诊断中介轴承故障类型,表现出了较强的泛化能力。 展开更多
关键词 中介轴承 模态分解 极限学习 灰狼算法 故障诊断
在线阅读 下载PDF
基于变分模态分解与灰狼算法优化极限学习机的滚动轴承故障诊断 被引量:18
2
作者 郑小霞 蒋海生 +1 位作者 刘静 魏彦彬 《轴承》 北大核心 2021年第9期48-53,共6页
提出了基于变分模态分解(VMD)和灰狼算法优化极限学习机(GWO-ELM)的故障诊断方法。采用变分模态分解对轴承振动信号进行分解,计算分解后本征模态分量的模糊熵并构建多尺度特征向量,将其输入灰狼算法改进极限学习机中进行故障模式识别。... 提出了基于变分模态分解(VMD)和灰狼算法优化极限学习机(GWO-ELM)的故障诊断方法。采用变分模态分解对轴承振动信号进行分解,计算分解后本征模态分量的模糊熵并构建多尺度特征向量,将其输入灰狼算法改进极限学习机中进行故障模式识别。通过西储大学滚动轴承故障数据分析了变分模态分解及模糊熵算法中的参数选择问题,并随该算法进行了噪声鲁棒性验证。滚动轴承现场故障数据的诊断结果以及与常规极限学习机(ELM)和多隐层极限学习机(M-ELM)的对比分析表明,GWO-ELM模型能够有效识别滚动轴承故障类型,而且具备较高的故障识别率和较快的诊断速度。 展开更多
关键词 滚动轴承 故障诊断 变分模态分解 灰狼算法 极限学习
在线阅读 下载PDF
基于灰狼算法优化极限学习机的锂离子电池SOC估计 被引量:5
3
作者 王桥 魏孟 +2 位作者 叶敏 李嘉波 徐信芯 《储能科学与技术》 CAS CSCD 北大核心 2021年第2期744-751,共8页
准确的电池荷电状态(SOC)估计是电动车辆正常工作的基本前提。针对目前电池荷电状态估计时存在的非线性、不平稳等干扰因素的影响,本工作提出了基于灰狼优化算法的极限学习机的锂离子电池SOC估计方法,以提高估计精度并缩短估计时长。传... 准确的电池荷电状态(SOC)估计是电动车辆正常工作的基本前提。针对目前电池荷电状态估计时存在的非线性、不平稳等干扰因素的影响,本工作提出了基于灰狼优化算法的极限学习机的锂离子电池SOC估计方法,以提高估计精度并缩短估计时长。传统的极限学习机(ELM)直接随机生成模型参数,并对SOC进行估计,该方法运行速度快且泛化性能好。但极限学习机需要找出最优的隐含层神经元参数才能达到较高的精度。因此,通过灰狼优化算法(GWO)进一步优化模型参数,并通过选择合适的激活函数,弥补了传统极限学习机的不足。最后通过与粒子群优化的前馈神经网络算法(BPNN-PSO)和极限学习机算法从多维度进行对比分析,在不同工况下验证了此方法在电池SOC估计中的优越性。结果表明,基于灰狼优化算法的极限学习机的锂离子电池荷电状态估计精度高、估算时长较短且鲁棒性较好,明显优于传统SOC估计方法。本研究有助于推动新能源车辆电池管理系统的开发与应用,为可靠的电池管理系统的研发提供支持。 展开更多
关键词 锂离子电池 荷电状态 极限学习 灰狼优化
在线阅读 下载PDF
基于灰狼算法优化深度极限学习机的钢轨热处理性能预测模型
4
作者 蔡里批 李硕 丁敬国 《材料与冶金学报》 北大核心 2025年第2期162-170,共9页
为了研究钢轨的化学成分、入口温度、环境温度,以及风冷时风压、风速等参数对热处理钢轨性能的综合影响,进一步解决钢轨热处理后设定精度低的难题,开发了一种基于灰狼算法优化深度极限学习机(grey wolf optimization deep extreme learn... 为了研究钢轨的化学成分、入口温度、环境温度,以及风冷时风压、风速等参数对热处理钢轨性能的综合影响,进一步解决钢轨热处理后设定精度低的难题,开发了一种基于灰狼算法优化深度极限学习机(grey wolf optimization deep extreme learning machine,GWO-DELM)的钢轨热处理性能预测模型.先采用深度极限学习机(DELM)构建出工艺模型,而后,针对深度极限学习机中初始权值随机确定而引起的预测结果准确度较低的问题,利用灰狼优化算法(GWO)对初始权值进一步确定.结果表明:该模型在预测不同规格钢轨的抗拉强度时,95.80%以上样本点的预测误差集中在-20~20 MPa,在预测踏面布氏硬度时,95.73%以上样本点的预测误差集中在-8~8;与传统模型相比,GWO-DELM具有更优异的预测精度及泛化能力,可应用在热轧钢轨风冷处理的性能预测上,为热处理参数的选择提供参考. 展开更多
关键词 钢轨热处理 灰狼优化算法 深度极限学习 性能参数预测
在线阅读 下载PDF
基于改进蜣螂优化算法深度混合核极限学习机的高压断路器故障诊断
5
作者 范兴明 许洪华 +3 位作者 张思舜 李涛 蒋延军 张鑫 《电工技术学报》 北大核心 2025年第12期3994-4003,共10页
针对高压断路器机械故障诊断准确率偏低的问题,该文提出一种基于改进蜣螂优化算法(IDBO)优化深度混合核极限学习机(DHKELM)的故障诊断方法。首先,采用逐次变分模态分解(SVMD)对高压断路器合闸振动信号进行分解,得到若干个含本征频率的... 针对高压断路器机械故障诊断准确率偏低的问题,该文提出一种基于改进蜣螂优化算法(IDBO)优化深度混合核极限学习机(DHKELM)的故障诊断方法。首先,采用逐次变分模态分解(SVMD)对高压断路器合闸振动信号进行分解,得到若干个含本征频率的固有模态分量(IMF);其次,提取各IMF分量的功率谱熵构建特征向量矩阵,并利用t分布-随机邻域嵌入算法(t-SNE)对特征向量进行数据降维;然后,引入融合Tent混沌映射、黄金正弦策略、自适应t分布扰动策略对传统蜣螂优化算法(DBO)进行改进,并使用IDBO对DHKELM进行参数优化,完成IDBO-DHKELM高压断路器故障诊断模型的构建;最后,通过搭建模拟故障的实物断路器实验平台进行验证,结果表明,该文提出的方法在故障诊断上的准确率达到了98.33%,相较于其他故障诊断模型在多项分类评价指标上均有显著提升,为准确、可靠地诊断高压断路器机械故障提供了新方案。 展开更多
关键词 高压断路器 改进蜣螂优化算法 深度混合核极限学习 故障诊断 逐次变分模 态分解
在线阅读 下载PDF
基于算法优化极限学习机的香芋皮改性膳食纤维制备及其NO_(2)^(-)吸附量预测
6
作者 邓忠惠 谢微 《中国无机分析化学》 北大核心 2025年第6期889-897,共9页
在响应面法的基础上,收集所有实验数据,包括工艺参数和NO_(2)^(-)吸附量。对数据进行预处理,选择合适的输入变量(料液比、盐酸浓度、反应温度和反应时间),使用训练数据建立初始ELM模型。采用遗传算法(GA)、粒子群优化算法(PSO)、麻雀搜... 在响应面法的基础上,收集所有实验数据,包括工艺参数和NO_(2)^(-)吸附量。对数据进行预处理,选择合适的输入变量(料液比、盐酸浓度、反应温度和反应时间),使用训练数据建立初始ELM模型。采用遗传算法(GA)、粒子群优化算法(PSO)、麻雀搜索算法(SSA)、灰狼优化算法(GWO)和海鸥算法(SOA)对ELM进行优化。使用训练数据集对优化后的ELM模型进行训练。使用测试数据集对模型进行验证,评估模型的性能指标。结果显示,5种优化后的ELM模型在各项性能指标上均优于初始ELM模型。在5种优化算法中,SSA-ELM模型表现最为显著,其绝对误差(MAE)、均方误差(MSE)、均方误差根(RMSE)、平均绝对百分比误差(MAPE)分别为0.023498、0.0007391、0.027186和0.037267%,是所有优化算法测试模型中最低值。在测试模型中,原始ELM模型的R^(2)为0.013291,而GA-ELM、PSO-ELM、SSA-ELM、GWO-ELM和SOA-ELM模型的R^(2)分别0.86709、0.98016、0.99971、0.99998和0.99969。这表明5种优化ELM模型具有更高的拟合度、更好的泛化能力和稳定性,且相对于原始ELM模型,R^(2)值有显著提升。优化后的ELM模型,可以快速、准确地预测不同工艺条件下香芋皮改性膳食纤维的NO_(2)^(-)吸附量,减少实验成本和时间,提高生产效率和产品质量,为实际应用提供可靠的预测工具。 展开更多
关键词 香芋皮改性膳食纤维 响应面法 极限学习 算法优化 预测
在线阅读 下载PDF
基于改进麻雀搜索算法优化核极限学习机的弹丸气动参数辨识 被引量:1
7
作者 高展鹏 易文俊 《电子测量与仪器学报》 北大核心 2025年第2期72-82,共11页
弹丸的气动参数直接影响其飞行轨迹,进而决定导弹的设计和性能评估。由于高速飞行中的复杂气动环境和气动参数间的相互作用,准确辨识气动参数成为一项具有挑战性的问题。针对这一问题将采用麻雀搜索算法(SSA)和核极限学习机(KELM)的组... 弹丸的气动参数直接影响其飞行轨迹,进而决定导弹的设计和性能评估。由于高速飞行中的复杂气动环境和气动参数间的相互作用,准确辨识气动参数成为一项具有挑战性的问题。针对这一问题将采用麻雀搜索算法(SSA)和核极限学习机(KELM)的组合模型来辨识弹丸的气动参数,为充分挖掘SSA算法性能,提高辨识精确度,将对SSA算法的初始化策略、收敛因子和加入者的位置更新策略进行改进,采用CEC2022测试函数对改进后的麻雀搜索算法(ISSA)的改进措施的有效性进行验证,并采用ISSA优化KELM的核参数和正则化系数,提出ISSA-KELM辨识模型。研究结果表明,直接采用极限学习机(ELM)算法的辨识精确度最低,无法描述非线性区域弹丸的气动参数特征,通过在ELM算法中引入核函数提出KELM方法可以将辨识精确度提高1~4个量级,KELM和SSA-KELM等模型在非线性区域的辨识结果与真实值还有一定的差距,而采用ISSA-KELM模型的辨识结果最为精确,相比较基本的ELM算法辨识结果提高约4~5个量级,可以准确获取弹丸的气动参数,本研究为精确飞行轨迹预测和导弹性能优化提供了可靠的技术支持。 展开更多
关键词 弹丸 麻雀搜索算法 极限学习 气动参数辨识 非线性
在线阅读 下载PDF
基于“十二生肖”算法优化的加权极限学习机月径流预测
8
作者 韩艳 崔东文 《三峡大学学报(自然科学版)》 北大核心 2025年第4期1-10,共10页
为提高月径流时间序列预测精度,改进加权极限学习机(WELM)预测性能,对比验证“十二生肖”算法在基准测试函数和实例目标函数上的优化效果,提出经验小波变换二次分解(EWT^(Ⅱ))技术-“十二生肖”算法-WELM月径流时间序列预测模型.首先,... 为提高月径流时间序列预测精度,改进加权极限学习机(WELM)预测性能,对比验证“十二生肖”算法在基准测试函数和实例目标函数上的优化效果,提出经验小波变换二次分解(EWT^(Ⅱ))技术-“十二生肖”算法-WELM月径流时间序列预测模型.首先,利用经验小波变换(EWT)对月径流时间序列进行分解处理,得到EWT_(1)、EWT_(2)两个分解分量;采用模糊熵(FuzzyEn)计算EWT_(1)、EWT_(2)分量的模糊熵值,利用EWT^(Ⅱ)对模糊熵值较大的EWT_(1)分量进行二次分解,得到EWT_(1-1)~EWT_(1-3)三个分量.其次,基于EWT_(1-1)~EWT_(1-3)、EWT_(2)分量训练集构建4个WELM输入层权值和隐含层偏差(超参数)优化的实例目标函数,同时选取6个基准测试函数作为对比验证函数,利用“十二生肖”算法分别对6个基准测试函数和4个实例目标函数进行极值寻优与对比分析.最后,建立EWT^(Ⅱ)-“十二生肖”算法-WELM模型,通过云南省南洞地下河月径流预测实例对12种模型进行验证.结果表明:“十二生肖”算法对6个基准测试函数寻优的总排名与对4个实例目标函数寻优的总排名不一致,总体上冠豪猪优化算法(CPO)、野狗优化算法(DOA)寻优效果较好,变色龙算法(CSA)、天牛须搜索算法(BAS)、自学羚羊迁徙算法(SAMA)寻优效果较差;“十二生肖”算法对4个实例目标函数寻优的总排名与12种模型预测精度总排名基本一致,表明“十二生肖”算法极值寻优能力越强,获得的WELM超参数越优,所构建的预测模型性能越好;EWT^(Ⅱ)-CPO/CSO/DOA/CapSA/WHO-WELM模型预测的E_(MAP)、E_(MA)、E_(RMS)分别在0.422%~0.485%、0.022~0.026m^(3)/s、0.028~0.032m^(3)/s之间,优于其他对比模型,具有更好的预测效果. 展开更多
关键词 月径流预测 经验小波变换 二次分解 “十二生肖”算法 加权极限学习 函数优化
在线阅读 下载PDF
基于泊松噪声和优化极限学习机的多因素混合学习方法及应用
9
作者 蒋锋 路畅 王辉 《统计与决策》 北大核心 2025年第1期52-57,共6页
针对风电功率数据高波动性和间歇性的特点,文章提出了一种基于泊松噪声的互补集合经验模态分解(CEEMDPN)和改进的蛇优化算法(MSO)优化极限学习机的多因素混合学习方法。首先,利用CEEMDPN将风电功率序列分解为子序列;然后,引入曲线自适... 针对风电功率数据高波动性和间歇性的特点,文章提出了一种基于泊松噪声的互补集合经验模态分解(CEEMDPN)和改进的蛇优化算法(MSO)优化极限学习机的多因素混合学习方法。首先,利用CEEMDPN将风电功率序列分解为子序列;然后,引入曲线自适应调整参数改进蛇优化算法;最后,运用MSO优化的极限学习机(ELM)对每个子序列进行预测并集成。为了验证CEEMDPN-MSO-ELM模型的有效性,采用龙源电力集团的风电功率数据进行超短期预测,实证结果表明,CEEMDPN算法能够加强风电功率序列的主频率部分并提高分解精度,MSO算法能够很好地平衡算法的寻优速度与收敛精度,从而有效提升ELM模型的预测性能,所提模型的预测精度和稳健性均优于其他对比模型。 展开更多
关键词 超短期风电功率预测 互补集合经验模态分解 优化算法 极限学习
在线阅读 下载PDF
基于改进粒子群算法和极限学习机模型的配电网物资需求预测
10
作者 王永利 赵中华 +2 位作者 张一诺 冯天义 刘怡然 《科学技术与工程》 北大核心 2025年第15期6410-6418,共9页
为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的... 为解决电网物资品种繁多、规格多样、数量巨大、用途广泛、受政策和投资影响大等特点所导致的预测模型构建困难的问题。首先,通过德尔菲法和灰色关联分析法(gray correlation analysis,GRA)筛选影响基建、业扩及抢修项目物资需求数量的因素。其次,利用引入自适应惯性因子和学习因子的改进粒子群算法调整极限学习机的最佳参数组合,训练各类配网项目物资需求预测模型。最后,以南方电网深圳市某供电局2020—2022年基建项目10 kV电力电缆需求情况为例,将GRA-IPSO-ELM(grey relational analysis,improved particle swarm optimization,and extreme learning machines)德尔菲法和灰色关联分析法模型与常见的4种预测模型的结果进行对比。结果表明,相较于ELM模型、支持向量机模型以及PSO-ELM模型,GRA-IPSO-ELM模型预测准确率得到10.38%、5.37%、3.83%的提升,可见,所提出的模型实现了对配网物资需求数量准确且高效的预测。 展开更多
关键词 物资需求预测 配电网 极限学习 改进粒子群优化算法
在线阅读 下载PDF
基于极限学习机和晶体结构算法的污染食品早期检测
11
作者 祝福 刘瑞卿 +1 位作者 潘克锋 赵蕊 《食品与机械》 北大核心 2025年第6期68-74,共7页
[目的]提出一种基于极限学习机和晶体结构算法的污染食品早期检测方法。[方法]通过晶体结构算法优化特征选择,结合极限学习机进行快速高效的分类与检测,提升污染食品早期检测精度与效率。[结果]与传统方法相比,试验方法在准确率(94.5%)... [目的]提出一种基于极限学习机和晶体结构算法的污染食品早期检测方法。[方法]通过晶体结构算法优化特征选择,结合极限学习机进行快速高效的分类与检测,提升污染食品早期检测精度与效率。[结果]与传统方法相比,试验方法在准确率(94.5%)和F_(1)分数(93.2%)上均有显著提升,且在召回率和处理速度方面也表现出优于其他最新方法的优势。与最新的深度学习方法相比,试验方法的训练时间约缩短了30%,检测速度提高了25%。[结论]基于极限学习机与晶体结构算法的污染食品早期检测方法在提高检测精度、加快检测速度及优化计算效率方面表现出了明显优势,具有较好的实际应用前景,尤其适用于快速大规模食品安全检测。 展开更多
关键词 极限学习 晶体结构算法 污染食品 早期检测 特征选择 食品安全
在线阅读 下载PDF
基于改进北方苍鹰算法与混合核极限学习机的齿轮箱故障诊断 被引量:1
12
作者 杜董生 王梦姣 +1 位作者 冒泽慧 赵环宇 《控制理论与应用》 北大核心 2025年第4期796-804,共9页
针对行星齿轮箱故障诊断问题,本文提出了一种基于改进北方苍鹰优化(INGO)算法与混合核极限学习机(HKELM)的行星齿轮箱故障诊断方法.首先,引入Savitzky-Golay(SG)滤波对齿轮箱原始信号进行去噪.利用时变滤波经验模态分解(TVF-EMD)将去噪... 针对行星齿轮箱故障诊断问题,本文提出了一种基于改进北方苍鹰优化(INGO)算法与混合核极限学习机(HKELM)的行星齿轮箱故障诊断方法.首先,引入Savitzky-Golay(SG)滤波对齿轮箱原始信号进行去噪.利用时变滤波经验模态分解(TVF-EMD)将去噪后的信号分解成多个本征模态函数(IMF),使用方差贡献率、相关系数和信息熵筛选出最优的IMF.将最优IMF重构后,对重构信号进行时间同步平均(TSA)去噪以减少故障诊断模型的数据计算量.将Tent混沌映射、混合正弦余弦算法和Levy飞行策略用于改进北方苍鹰优化(NGO)算法,得到一种新的INGO算法.同时,引入余弦因子以平衡正弦余弦算法的全局和局部开发能力.最后,利用INGO算法对HKELM进行优化,用以提高HKELM模型的故障诊断准确率.将所提方法应用于两个案例对模型进行检验,实验结果表明,本文所提方法具有可行性和优越性. 展开更多
关键词 混合核极限学习 改进北方苍鹰优化算法 时变滤波经验模态分解 故障诊断
在线阅读 下载PDF
基于数据分解与斑马算法优化的混合核极限学习机月径流预测 被引量:5
13
作者 李菊 崔东文 《长江科学院院报》 CSCD 北大核心 2024年第6期42-50,共9页
为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(... 为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(正则化参数、核参数、权重系数),建立WPT-ZOA-HKELM组合模型,并构建WPT-遗传算法(GA)-HKELM、WPT-灰狼优化(GWO)算法-HKELM、WPT-鲸鱼优化算法(WOA)-HKELM、WPT-ZOA-极限学习机(ELM)、WPT-ZOA-最小二乘支持向量机(LSSVM)、ZOA-HKELM作对比模型,通过黑河流域莺落峡、讨赖河水文站月径流时间序列预测实例对各模型进行检验。结果表明:(1)莺落峡、讨赖河水文站月径流时间序列WPT-ZOA-HKELM模型预测的平均绝对百分比误差分别为1.054%、0.761%,决定系数均达0.999 9,优于其他对比模型,具有更高的预测精度,预测效果更好。(2)利用ZOA优化HKELM超参数,可提高HKELM预测性能,优化效果优于GWO、WOA、GA。(3)预测模型能充分发挥WPT、ZOA和HKELM优势,提高月径流预测精度;在相同分解和优化情形下,HKELM的预测性能优于ELM、LSSVM。 展开更多
关键词 月径流预测 时间序列 斑马优化算法 混合核极限学习 小波包变换 超参数优化
在线阅读 下载PDF
改进蜣螂算法优化机器学习模型
14
作者 费敏学 黄东岩 郭晓新 《吉林大学学报(理学版)》 北大核心 2025年第4期1117-1121,共5页
针对传统支持向量机(SVM)准确率较低的问题,提出一个LDBO-SVM模型.首先,为解决原始蜣螂优化(DBO)算法初始解分布不均匀的问题,在算法中引入Logistic混沌映射,构建LDBO算法;其次,用LDBO算法优化传统支持向量机内部惩罚因子和核参数,构建L... 针对传统支持向量机(SVM)准确率较低的问题,提出一个LDBO-SVM模型.首先,为解决原始蜣螂优化(DBO)算法初始解分布不均匀的问题,在算法中引入Logistic混沌映射,构建LDBO算法;其次,用LDBO算法优化传统支持向量机内部惩罚因子和核参数,构建LDBO-SVM模型;最后,为验证LDBO-SVM模型的性能,将LDBO-SVM模型与经过其他5种群智能优化算法改进的SVM进行比较.实验结果表明,LDBO-SVM模型准确率达94.53%,可准确预测学生成绩,为教师改善教学计划提供帮助. 展开更多
关键词 学习 支持向量 蜣螂优化算法 参数优化
在线阅读 下载PDF
基于分布特征学习灰狼优化算法的云计算资源调度方法
15
作者 程林钢 王亚光 《计算机应用与软件》 北大核心 2025年第5期306-316,共11页
针对当前云计算资源调度方法求解精度不高、容易陷入局部最优等问题,提出一种基于改进灰狼优化算法的云计算资源调度方法。该文在基于Map/Reduce的框架模式下,构建云计算资源调度数学模型;为了提高灰狼优化算法的全局搜索能力,采用分布... 针对当前云计算资源调度方法求解精度不高、容易陷入局部最优等问题,提出一种基于改进灰狼优化算法的云计算资源调度方法。该文在基于Map/Reduce的框架模式下,构建云计算资源调度数学模型;为了提高灰狼优化算法的全局搜索能力,采用分布特征学习框架策略调整搜索方向;利用改进后的灰狼优化算法解决云计算资源调度。仿真实验结果表明,相比于其他算法,改进的灰狼优化算法在解决资源调度方面收敛精度较小,能够寻优到较好的资源调度策略,尤其在大规模任务中。 展开更多
关键词 云计算 资源调度 灰狼优化算法 分布特征学习框架
在线阅读 下载PDF
基于海马优化深层极限学习机的电力信息物理系统FDIA检测
16
作者 席磊 白芳岩 +3 位作者 王文卓 彭典名 陈洪军 李宗泽 《电力系统保护与控制》 北大核心 2025年第4期14-26,共13页
虚假数据注入攻击(false data injection attack,FDIA)严重威胁电力信息物理系统的安全稳定。针对已有FDIA检测算法无法精确定位受攻击位置的局限性,提出了一种基于精英余弦变异融合的海马优化算法优化深层极限学习机(deep extreme lear... 虚假数据注入攻击(false data injection attack,FDIA)严重威胁电力信息物理系统的安全稳定。针对已有FDIA检测算法无法精确定位受攻击位置的局限性,提出了一种基于精英余弦变异融合的海马优化算法优化深层极限学习机(deep extreme learning machine,DELM)的FDIA检测定位算法。首先,该算法将极限学习机和极限学习机自编码器相结合得到了具备强特征表达能力的DELM。然后,通过海马优化算法对DELM的偏置和输入权重进行择优,用于改善算法指标不稳定的问题。同时在捕食阶段引入精英余弦变异算法以提升海马的收敛速度与DELM的精度。最后,将系统量测数据作为输入特征,利用DELM得到节点状态标签,从而实现污染状态量的定位。通过在IEEE 14节点系统和IEEE 57节点系统进行大量仿真对比分析,验证了所提算法在准确率、精确率、召回率及F1值等检测定位性能方面均具有明显优势,能够实现FDIA的精确定位。 展开更多
关键词 电力信息物理系统 虚假数据注入攻击 海马优化算法 深层极限学习
在线阅读 下载PDF
MMC子模块故障诊断的改进沙猫群优化极限学习机方法
17
作者 张彼德 何恒志 +3 位作者 邵帅 邱杰 马俊梅 陈广 《电力科学与技术学报》 北大核心 2025年第1期245-255,共11页
为了实现对模块化多电平换流器(modular multilevel converter,MMC)子模块开关管的故障诊断,对沙猫群优化(Sand Cat swarm optimization,SCSO)算法进行改进,提出一种改进沙猫群优化(improved Sand Cat swarm optimization,ISCSO)算法优... 为了实现对模块化多电平换流器(modular multilevel converter,MMC)子模块开关管的故障诊断,对沙猫群优化(Sand Cat swarm optimization,SCSO)算法进行改进,提出一种改进沙猫群优化(improved Sand Cat swarm optimization,ISCSO)算法优化极限学习机(extreme learning machine,ELM)的故障诊断方法。该方法利用Cubic混沌映射、螺旋搜索及麻雀警戒机制对沙猫搜索的3个阶段进行改进和优化,以提高算法的收敛速度和搜索能力。通过在MATLAB/SIMULINK平台搭建模块化MMC模型,以子模块故障时的桥臂环流作为输入量,通过将ISCSO-ELM与不同算法优化后的ELM模型进行故障诊断效果对比。结果表明,所提方法能有效识别子模块故障,在MMC故障诊断方面具有可行性和优越性,故障诊断效果更好。 展开更多
关键词 模块化多电平换流器 子模块开路故障 沙猫群优化算法 极限学习 故障诊断
在线阅读 下载PDF
基于灰狼算法和极限学习机的风速多步预测 被引量:6
18
作者 张文煜 马可可 +2 位作者 郭振海 赵晶 邱文智 《郑州大学学报(工学版)》 CAS 北大核心 2024年第2期89-96,共8页
为了提高风速的多步预测水平,提出了一种基于数据信号分解和灰狼算法优化极限学习机的混合预测模型。首先,使用具有自适应噪声的完全集成经验模态分解算法将原始风速时间序列分解为若干本征模态函数和一个残差序列,并使用偏自相关函数... 为了提高风速的多步预测水平,提出了一种基于数据信号分解和灰狼算法优化极限学习机的混合预测模型。首先,使用具有自适应噪声的完全集成经验模态分解算法将原始风速时间序列分解为若干本征模态函数和一个残差序列,并使用偏自相关函数法对模型输入进行特征选择;其次,在分解子序列上分别建立模型并进行预测,构造多输入多输出策略的极限学习机神经网络,使用灰狼优化算法求解其中的最优化隐含层权值和偏置;最后,对子序列进行重构并得到最终的预测结果。使用时间分辨率为15 min的多组实测资料开展模拟实验,所提模型在3个风电场的均方根误差分别为0.859、0.925、0.927 m/s,均低于其他对比模型,验证了该模型在未来4 h风速预测即16步预测中的有效性。 展开更多
关键词 风速预测 多步预测 信号分解 特征选择 灰狼优化算法 极限学习
在线阅读 下载PDF
基于金枪鱼群算法优化极限学习机的混凝土抗压强度预测 被引量:6
19
作者 张博吾 耿秀丽 《计算机应用研究》 CSCD 北大核心 2024年第2期444-449,共6页
混凝土抗压强度是建筑结构设计与评价的一个重要指标,它直接关乎建筑的质量与安全。为解决现有机器学习模型对其预测存在预测耗时长、精度不够高,不能很好地满足施工现场对混凝土抗压强度预测实时性与准确性要求的问题,提出一套基于新... 混凝土抗压强度是建筑结构设计与评价的一个重要指标,它直接关乎建筑的质量与安全。为解决现有机器学习模型对其预测存在预测耗时长、精度不够高,不能很好地满足施工现场对混凝土抗压强度预测实时性与准确性要求的问题,提出一套基于新式仿生算法金枪鱼群算法优化极限学习机(TSO-ELM)的混凝土抗压强度预测方法。该方法通过对ELM隐藏层初始参数中的连接权值与偏置值使用TSO进行寻优,有效提升了ELM的预测准确度。在仿真实验部分,通过两组混凝土数据集对ELM的预测速度、TSO的寻优能力、TSO-ELM模型的泛化性逐一进行验证。结果表明,该方法可以有效提高预测的速度与精准度,迭代次数更少,同时具有良好的泛化性,为现场施工及时进行混凝土抗压强度的预测提供了一种新方法。 展开更多
关键词 混凝土 抗压强度 金枪鱼群优化算法 极限学习 软测量
在线阅读 下载PDF
基于蚁群算法优化极限学习机的声学底质分类方法 被引量:1
20
作者 丁德秋 马丹 +3 位作者 陈帆 樊妙 邢喆 唐秋华 《海洋通报》 CSCD 北大核心 2024年第6期750-759,共10页
海洋底质作为深海海底环境的重要组成部分,其类型及分布特征在深海资源开发利用和海洋工程建设中有着巨大的参考价值,是海洋测绘调查的一项重要内容,基于多波束测深系统采集强度数据的监督分类方法逐渐获得广泛应用。随着人工智能的迅... 海洋底质作为深海海底环境的重要组成部分,其类型及分布特征在深海资源开发利用和海洋工程建设中有着巨大的参考价值,是海洋测绘调查的一项重要内容,基于多波束测深系统采集强度数据的监督分类方法逐渐获得广泛应用。随着人工智能的迅速发展,神经网络在声学底质分类中得到广泛应用,极限学习机(extreme learning machine,ELM)权值和偏重不再需要迭代优化,是一种学习速度较快的神经网络。针对ELM神经网络中由于初始权值和偏重矩阵随机确定而导致ELM分类器鲁棒性差的问题,本文选取蚁群算法优化ELM神经网络的初始参数,构建了ACO-ELM神经网络分类模型,经多次迭代后,由于信息素的累积,蚂蚁种群不断向最优路径偏移,训练精度逐渐增高,模型逐步达到平稳。通过底质分类实验验证表明,BM3D+ACO-ELM分类器处理的多波束声呐图像斑点噪声得到了有效控制,在西南印度洋脊龙旂热液钙质软泥和硫化物混合区域,BM3D+ACO-ELM分类器相比于其他三种分类器具有明显优势,底质分类精度得到较大提高,其中硫化物分类精度为93.23%,深海钙质软泥分类精度为93.78%。 展开更多
关键词 极限学习 反向散射强度 底质分类 蚁群算法 图像滤波处理
在线阅读 下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部