期刊文献+
共找到2,032篇文章
< 1 2 102 >
每页显示 20 50 100
基于鲸鱼优化算法-支持向量机判别模型的风化基岩富水性评价:以神府煤田张家峁煤矿为例
1
作者 侯恩科 吴家镁 +1 位作者 杨帆 张池 《科学技术与工程》 北大核心 2025年第1期119-127,共9页
为实现风化基岩含水层富水性的准确预测,以张家峁井田内的28组风化基岩抽水试验钻孔数据作为训练及验证样本,选取风化基岩的岩性组合指数、风化指数、厚度、岩芯采取率、埋深作为评价指标,提出基于鲸鱼优化算法-支持向量机(whale optimi... 为实现风化基岩含水层富水性的准确预测,以张家峁井田内的28组风化基岩抽水试验钻孔数据作为训练及验证样本,选取风化基岩的岩性组合指数、风化指数、厚度、岩芯采取率、埋深作为评价指标,提出基于鲸鱼优化算法-支持向量机(whale optimization algorithm-support vector machines,WOA-SVM)的风化基岩含水层富水性判别模型。该模型可对无抽水试验资料区域的风化基岩的富水性级别进行预测,综合利用井田内249组勘探钻孔的地质信息,实现井田的风化基岩富水性分区。研究表明,张家峁井田风化基岩整体富水性较弱,且空间分布不均;井田中部和乌兰不拉沟沿线的局部地区存在强富水性区域,但其分布范围较小,中西部和东南部有部分中等富水性区域,东北部及西南部区域几乎全为弱和极弱富水性。该方法预测的结果与实际较为吻合,研究成果可为矿井安全生产提供参考,也为风化基岩富水性预测提供了一种新思路。 展开更多
关键词 风化基岩 支持向量(SVM) 鲸鱼优化(WOA) 富水性分区
在线阅读 下载PDF
基于优化的支持向量机模型评估和预测社会-生态系统脆弱性——以陕南秦巴山区为例 被引量:1
2
作者 李润阳 陈佳 +3 位作者 杨新军 尹莎 徐俐 白玉玲 《生态学报》 北大核心 2025年第5期2281-2297,共17页
随着人类活动干扰不断加剧,促使我国山区人地关系发生了重大变化,从社会⁃生态系统视角动态评估和预测秦巴山区社会⁃生态系统脆弱性(SESV)的演化与特征,对实现我国山区生态保护与高质量发展具有重要的实践意义。利用空间显式脆弱性模型模... 随着人类活动干扰不断加剧,促使我国山区人地关系发生了重大变化,从社会⁃生态系统视角动态评估和预测秦巴山区社会⁃生态系统脆弱性(SESV)的演化与特征,对实现我国山区生态保护与高质量发展具有重要的实践意义。利用空间显式脆弱性模型模型,将SESV分解为暴露风险、敏感性和适应能力三个维度共48个指标,定量评估了2000—2020年陕南秦巴山区SESV及其各维度的空间分布特征,随后构建支持向量机模型,通过对比三种算法优化后的模型精度选取最优模型并预测2020—2050年陕南秦巴山区SESV及其各维度的时空分布和演化特征。结果显示:①陕南秦巴山区的SESV整体处于中低脆弱水平,在空间上呈现“中部高,南北低”的分布格局。②粒子群算法优化的支持向量机模型的准确性最优,且选取合适的训练样本数量能进一步改善预测性能。③预测结果显示,陕南秦巴山区SESV得到了显著降低,社会⁃生态系朝着良好态势发展。其中,暴露风险与SESV具有趋同性且地区间的差异变小,敏感性与适应能力维度均呈现“西高东低”的态势但地区间的差异并未缓解。研究旨在通过中国山区典型案例分析为SESV评估与预测提供参考依据。 展开更多
关键词 社会⁃生态系统 脆弱性 支持向量模型 优化算法 陕南秦巴山区
在线阅读 下载PDF
基于红狐优化支持向量机回归的船舶备件预测
3
作者 孟冠军 杨思平 钱晓飞 《合肥工业大学学报(自然科学版)》 北大核心 2025年第1期25-31,共7页
针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐... 针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。 展开更多
关键词 船舶备件预测 红狐优化算法(RFO) 支持向量回归(SVR) 精英反向学习
在线阅读 下载PDF
基于数据分解与超参数优化的若干变体支持向量机月降水量预测
4
作者 周正道 黄斌 《节水灌溉》 北大核心 2025年第9期36-43,共8页
为提高月降水量时间序列预测精度,改进混合核相关向量机(HRVM)、混合核最小二乘支持向量机(HLSSVM)、混合核支持向量机(HSVM)、相关向量机(RVM)、最小二乘支持向量机(LSSVM)、支持向量机(SVM)泛化性能,基于1~3层小波包分解(WPT1~3)方法... 为提高月降水量时间序列预测精度,改进混合核相关向量机(HRVM)、混合核最小二乘支持向量机(HLSSVM)、混合核支持向量机(HSVM)、相关向量机(RVM)、最小二乘支持向量机(LSSVM)、支持向量机(SVM)泛化性能,基于1~3层小波包分解(WPT1~3)方法和麋鹿优化(EHO)算法,提出WPT1/WPT2/WPT3-EHO-HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM月降水量时间序列预测模型,通过云南省大理州2个雨量站月降水量预测实例对18种模型进行验证。首先利用WPT1/WPT2/WPT3对实例月降水量时序数据进行分解处理,划分训练集和验证集;然后基于训练集构建HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM超参数优化适应度函数,利用EHO优化适应度函数获得最优超参数;最后利用最优超参数建立WPT1/WPT2/WPT3-EHO-HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM模型对实例各分量进行预测和重构。结果表明:①18种模型对月降水量均具有较好拟合、预测精度。其中WPT3-EHO-HRVM/HLSSVM/HSVM模型预测的平均绝对误差(MAE)、决定系数(R2)1.70~0.81 mm、0.9996~0.9999,优于其他对比模型,具有最小的预测误差;WPT2-EHO-HRVM/HLSSVM/HSVM模型预测效果较好,精度较高;WPT1-EHO-HRVM/HLSSVM/HSVM模型预测误差相对较大。②在相同分解层数和EHO优化情形下,通过线性组合不同核函数的EHOHRVM/HLSSVM/HSVM模型能更好地适应不同类型的数据分布,显著提升月降水量预测精度。③WPT3分解效果优于WPT2,远优于WPT1,月降水量预测精度随着WPT分解层数的增加而提高。④通过EHO优化HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM超参数,能有效提升模型预测精度和预测效率。 展开更多
关键词 月降水量预测 小波包分解 麋鹿优化算法 混合核函数 支持向量及其变体 超参数优化
在线阅读 下载PDF
基于支持向量机的钢-混结合段疲劳性能研究
5
作者 王海波 王鸿燊 王文轩 《中南大学学报(自然科学版)》 北大核心 2025年第5期1874-1885,共12页
为了更准确地预测和评估钢-混结合段的疲劳性能,设计了缩尺比为1:2的关键格室构件进行设计寿命期内疲劳验证试验,用试验结果验证有限元模型的准确性。采用ABAQUS有限元软件对各种参数下的疲劳应力幅进行计算,结合Eurocode 3中的相关规... 为了更准确地预测和评估钢-混结合段的疲劳性能,设计了缩尺比为1:2的关键格室构件进行设计寿命期内疲劳验证试验,用试验结果验证有限元模型的准确性。采用ABAQUS有限元软件对各种参数下的疲劳应力幅进行计算,结合Eurocode 3中的相关规定预测钢-混结合段的疲劳性能。另外,选择支持向量机对多参数下的钢-混结合段疲劳性能进行评估。采用交叉验证等方法,调优支持向量机的核函数系数G和正则化参数C,以确保模型的最佳性能。研究结果表明:疲劳寿命预测结果准确率达98.78%,该方法为钢-混结合段的疲劳性能研究提供了一种新的、可靠的分析方法,可为工程实际应用提供参考。 展开更多
关键词 -混结合段 疲劳寿命 支持向量 模型试验
在线阅读 下载PDF
基于麻雀算法优化支持向量机的阀门内漏诊断研究 被引量:2
6
作者 龚家乐 曹丽华 +1 位作者 李大才 司和勇 《汽轮机技术》 北大核心 2025年第2期110-112,126,共4页
由于数据驱动支持向量机模型在阀门泄漏诊断过程中各个参数不具备自适应能力,导致诊断能力较弱,提出了麻雀算法(Sparrow Search Algorithm,SSA)优化支持向量机(support vector machines,SVM)的阀门内漏诊断模型,并在诊断过程和模型诊断... 由于数据驱动支持向量机模型在阀门泄漏诊断过程中各个参数不具备自适应能力,导致诊断能力较弱,提出了麻雀算法(Sparrow Search Algorithm,SSA)优化支持向量机(support vector machines,SVM)的阀门内漏诊断模型,并在诊断过程和模型诊断性能上与标准SVM模型进行对比分析。结果表明:在诊断过程中,SSA-SVM阀门内漏诊断模型能够适时调整模型参数,并保持较高的诊断性能,多个泄漏诊断指标均优于标准模型。当泄漏诊断准确率优先级高于诊断时间时,SSA-SVM诊断模型拥有更好的阀门泄漏诊断能力。 展开更多
关键词 阀门泄漏 支持向量 麻雀优化算法 故障诊断
在线阅读 下载PDF
基于灰狼优化支持向量机回归与SHAP值的锡冶炼能耗预测 被引量:8
7
作者 马朝君 彭巨擘 +4 位作者 袁海滨 郑光发 么长慧 章夏冰 冯早 《有色金属(冶炼部分)》 CAS 北大核心 2024年第2期1-7,共7页
锡冶炼过程综合能源消耗占整个锡生产过程90%,存在很大节能潜力。针对锡冶炼过程综合能耗机理模型难以建立、导致预测准确度不高的问题,提出灰狼优化的支持向量机回归(GWO-SVR)模型用于锡冶炼过程综合能耗的预测,并以某锡冶炼厂为例,将... 锡冶炼过程综合能源消耗占整个锡生产过程90%,存在很大节能潜力。针对锡冶炼过程综合能耗机理模型难以建立、导致预测准确度不高的问题,提出灰狼优化的支持向量机回归(GWO-SVR)模型用于锡冶炼过程综合能耗的预测,并以某锡冶炼厂为例,将所提模型与SVR、RF(随机森林)、BP(反向传播神经网络)、LR(线性回归)模型进行比较。结果表明,GWO-SVR模型可获得最理想的预测结果,在预测精度上相比于其他机器学习算法有着巨大优势。此外,使用SHAP值从全局解释和单样本解释两个方面解释所建立的GWO-SVR模型,可视化特征对输出的贡献,增加了GWO-SVR的可解释性,并以此制定可靠的节能策略。 展开更多
关键词 锡冶炼预测模型 模型可解释性 支持向量回归 灰狼优化算法
在线阅读 下载PDF
基于斑马算法优化支持向量回归机模型预测页岩地层压力 被引量:3
8
作者 赵军 李勇 +2 位作者 文晓峰 徐文远 焦世祥 《岩性油气藏》 CAS CSCD 北大核心 2024年第6期12-22,共11页
针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模... 针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模型和常规地层压力预测方法结果进行了对比。研究结果表明:①ZOA-SVR模型以实测地层压力数据为目标变量,优选与陇东地区长7段页岩地层压力数据关联度达到0.70以上的深度、声波时差、密度、补偿中子、自然伽马、深侧向电阻率、泥质含量等7个参数作为输入特征参数,设置训练样本数为40,交叉验证折数为5,初始化斑马种群数量为10,最大迭代次数为70,对惩罚因子和核参数进行优化并建模,参数优化后拟合优度指标R2达到0.942,模型预测的地层压力数据在训练集和测试集上的绝对误差均低于1 MPa,预测测试集地层压力数据与实测压力数据的平均相对误差为2.42%。②ZOA-SVR模型在研究区长7段地层压力预测中优势明显,比基于粒子群优化算法、灰狼算法和蚁群算法的模型具有更好的参数调节及优化能力,R2分别提高了0.209,0.327,0.142;比等效深度法、Eaton法、有效应力法预测的地层压力精度更高,相对误差分别降低了32.53%,15.31%,5.91%。③ZOA-SVR模型在实际钻井中的应用结果显示,研究区长7段地层压力在垂向上分布较稳定,泥页岩段的地层压力高于砂岩段,地层压力系数主要为0.80~0.90,整体上属于异常低压环境,与实际地层情况相符。 展开更多
关键词 页岩 地层压力 斑马优化算法 支持向量回归 器学习 测井曲线 长7段 三叠系 陇东地区
在线阅读 下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:8
9
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小二乘支持向量 软测量模型
在线阅读 下载PDF
基于改进联合分布适配和支持向量机的谐波减速器故障诊断
10
作者 石超 刘彪 +2 位作者 郭世杰 唐术锋 吕贺 《机电工程》 北大核心 2025年第3期441-450,共10页
在对谐波减速器进行变工况故障诊断时,一般难以获得大量的带标签数据,从而导致所训练的模型识别准确率较低。针对这一问题,提出了一种基于改进联合分布适配和支持向量机的迁移模型(方法),从而对谐波减速器进行了故障诊断。首先,对周期... 在对谐波减速器进行变工况故障诊断时,一般难以获得大量的带标签数据,从而导致所训练的模型识别准确率较低。针对这一问题,提出了一种基于改进联合分布适配和支持向量机的迁移模型(方法),从而对谐波减速器进行了故障诊断。首先,对周期样本进行了时域、频域以及熵特征的多特征提取,构造了样本集;然后,针对联合适配(JDA)对齐两域状态下,未考虑到数据潜在的几何结构问题,在JDA的基础上增加了联合分布的权重因子以及加权流形正则化项,并使用支持向量机(SVM)进行了伪标签的迭代更新,构造了改进联合分布适配-支持向量机(IJDA-SVM)迁移模型;最后,使用实验所得的谐波减速器振动信号数据以及滚动轴承公开数据集对该方法的有效性进行了验证。研究结果表明:IJDA-SVM在谐波减速器单域诊断效果上,最高识别率可达97.25%,平均识别率为94.08%,在谐波减速器多域诊断效果上,最高识别率可达95.25%,平均识别率为92.5%。采用该方法能够实现变工况谐波减速器的故障诊断目的,其具有诊断精度高、泛化效果好的优点。 展开更多
关键词 变速器 多域故障诊断 变工况 迁移学习 改进联合分布适配-支持向量 流形正则化
在线阅读 下载PDF
基于灰狼算法优化DBN-SVM的入侵检测方法
11
作者 彭庆媛 王晓峰 +3 位作者 唐傲 王军霞 华盈盈 何飞 《南京大学学报(自然科学版)》 北大核心 2025年第2期270-282,共13页
入侵检测技术作为一种可靠的网络安全防御手段,在保障网络安全方面具有重要意义.深度信念网络(Deep Belief Network,DBN)结合支持向量机(Support Vector Machine,SVM)是一种具有良好泛化能力和分类性能的机器学习方法,在入侵检测领域有... 入侵检测技术作为一种可靠的网络安全防御手段,在保障网络安全方面具有重要意义.深度信念网络(Deep Belief Network,DBN)结合支持向量机(Support Vector Machine,SVM)是一种具有良好泛化能力和分类性能的机器学习方法,在入侵检测领域有着广泛的应用.然而,该方法在处理高维数据时容易出现“维数灾难”问题,并且参数选择对分类性能有很大影响,针对以上不足,提出了一种基于灰狼算法(Grey Wolf Optimization,GWO)优化DBN-SVM的入侵检测方法.在GWO算法中,通过引入自适应狩猎权重系数和改进头狼位置更新公式来加快收敛速度和扩展狼群搜索范围,通过加入最优灰狼个体自适应扰动策略来避免陷入局部最优.进一步利用改进后的GWO算法优化DBN-SVM,并应用于入侵检测.实验结果表明,提出的方法在NSL-KDD和UNSW-NB15数据集上的准确率比未改进的DBN-SVM分别提高6.5%和5.7%,满足入侵检测的应用需求. 展开更多
关键词 深度信念网络 支持向量 灰狼优化算法 自适应狩猎权重系数 t分布扰动 入侵检测
在线阅读 下载PDF
基于改进灰狼优化与支持向量回归的滑坡位移预测 被引量:5
12
作者 任帅 纪元法 +2 位作者 孙希延 韦照川 林子安 《计算机应用》 CSCD 北大核心 2024年第3期972-982,共11页
针对滑坡位移难以预测、影响因素难以选择等问题,提出一种结合了二次移动平均(DMA)法、变分模态分解(VMD)、改进灰狼优化(IGWO)算法与支持向量回归(SVR)的模型进行滑坡位移预测。首先,利用DMA提取滑坡位移趋势项和周期项,采用多项式拟... 针对滑坡位移难以预测、影响因素难以选择等问题,提出一种结合了二次移动平均(DMA)法、变分模态分解(VMD)、改进灰狼优化(IGWO)算法与支持向量回归(SVR)的模型进行滑坡位移预测。首先,利用DMA提取滑坡位移趋势项和周期项,采用多项式拟合对趋势项进行预测;其次,对滑坡周期项的影响因素进行分类,采用VMD对原始影响因子序列进行分解获得最优序列;再次,提出一种结合SVR与基于改进Circle多策略的灰狼优化算法CTGWO-SVR(Circle Tactics Grey Wolf Optimizer with SVR)对滑坡周期项进行预测;最后采用时间序列加法模型求出累计位移预测序列,并采用灰色预测的后验证差校验和小概率误差对模型进行评价。实验结果表明,与GA-SVR和GWO-SVR模型相比,CTGWO-SVR的预测精度更高,拟合度达到0.979,均方根误差分别减小了51.47%与59.25%,预测精度等级为一级,可满足滑坡预测的实时性和准确性要求。 展开更多
关键词 滑坡位移预测 位移分解 时间序列 变分模态分解 灰色关联分析 灰狼优化算法 支持向量回归
在线阅读 下载PDF
基于支持向量机与蛇优化算法的氧化锆陶瓷磨削工艺参数优化 被引量:4
13
作者 陶其赫 马廉洁 +2 位作者 孙杨 王乐 李文博 《工具技术》 北大核心 2024年第5期84-88,共5页
为探究磨削工艺参数对氧化锆陶瓷的磨削温度和法向磨削力的影响,通过单因素实验和支持向量机方法建立磨削温度、法向磨削力的一元模型,模型决定系数均大于0.93。基于一元模型对多元模型进行假设,由正交实验结果和蛇优化算法求解得到多... 为探究磨削工艺参数对氧化锆陶瓷的磨削温度和法向磨削力的影响,通过单因素实验和支持向量机方法建立磨削温度、法向磨削力的一元模型,模型决定系数均大于0.93。基于一元模型对多元模型进行假设,由正交实验结果和蛇优化算法求解得到多元模型,并对模型进行验证。以温度、法向磨削力的多元数值模型作为目标函数,对温度和法向磨削力进行优化;基于蛇优化算法对工艺参数进行双目标优化,获得磨削工艺参数的最优解,验证实验结果表明,模型具有较高的精度,得到的最优工艺参数合理。 展开更多
关键词 支持向量 优化算法 参数优化 氧化锆陶瓷
在线阅读 下载PDF
基于参数优化多核支持向量机的光伏功率预测算法 被引量:3
14
作者 贺亦琛 师长立 +2 位作者 郭小强 贺伟 韩涛 《太阳能学报》 EI CAS CSCD 北大核心 2024年第9期394-404,共11页
准确的光伏功率预测对电力系统的稳定运行具有重大意义。针对现有预测算法在处理多维输入天气变量时存在的运算时间过长和特征提取能力较差的问题,提出一种基于参数优化的多核函数支持向量机的预测算法。首先,该新型算法对数据进行预处... 准确的光伏功率预测对电力系统的稳定运行具有重大意义。针对现有预测算法在处理多维输入天气变量时存在的运算时间过长和特征提取能力较差的问题,提出一种基于参数优化的多核函数支持向量机的预测算法。首先,该新型算法对数据进行预处理,灰色关联度提取与预测日相似度高的历史日以提升预测精度,主成分分析(PCA)对输入数据进行降维,从而提高光伏功率预测的速度。其次,针对单核支持向量机对多维数据特征提取能力相对较差的问题,基于线性核函数和径向基核函数建立多核支持向量机预测模型,根据每个核函数支持向量机的预测误差计算不同的权重,从而增强对输入数据特征提取能力并提高预测精度。采用灰狼优化(GWO)算法确定不同核函数支持向量机的参数以提高预测精度。最后,通过北京某光伏电站的历史数据集验证了该算法的预测效果。实例分析表明,与传统预测算法相比,预测精度和速度都有显著提高。 展开更多
关键词 光伏 预测 主成分分析 多核支持向量 灰狼优化算法
在线阅读 下载PDF
结合SMOTE技术与优化算法的支持向量机在慢性心衰不良结局预测中的应用 被引量:1
15
作者 李晓桐 程璠 +3 位作者 田晶 闫晶晶 张岩波 韩清华 《中国卫生统计》 CSCD 北大核心 2024年第6期802-806,共5页
目的应用优化算法的支持向量机(support vector machine,SVM)结合合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)预测慢性心衰患者不良结局,提高分类模型预测性能。方法顺序入选2014年1月至2017年12月,山西... 目的应用优化算法的支持向量机(support vector machine,SVM)结合合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)预测慢性心衰患者不良结局,提高分类模型预测性能。方法顺序入选2014年1月至2017年12月,山西省两所三级甲等医院心内科确诊为慢性心力衰竭的1183例住院患者,收集患者的病历资料。基于原始训练集构建logistic回归(logistic regression,LR)与支持向量机模型,同时结合SMOTE算法构建LR、SVM、遗传算法支持向量机(genetic algorithm support vector machine,GA-SVM)和粒子群支持向量机模型(particle swarm support vector machine,PSO-SVM),通过灵敏度(sensitivity,SEN)、准确度(accuracy,ACC)、特异度(specificity,SPE)、G-means、F-measure、ROC曲线下面积(area under receiver operating characteristic curve,AUC)等指标综合评价各模型的分类性能。结果相较于对原始数据进行直接分类,应用SMOTE技术均衡化数据集后,模型性能明显提高。均衡化训练集构建LR、SVM、GA-SVM和PSO-SVM模型结果表明,GA-SVM和PSO-SVM在SPE、ACC指标低于LR;SEN、G-means、F-measure和AUC均优于LR。GA-SVM和PSO-SVM的综合效果显著高于SVM(SEN、G-means、F-measure指标表现均优于SVM)。结论基于均衡化数据集构建GA-SVM或PSO-SVM模型可提高SVM对于心衰预后的预测性能。 展开更多
关键词 SMOTE 支持向量 遗传算法优化 粒子群算法优化 慢性心力衰竭
在线阅读 下载PDF
支持向量机结合FTIR的沥青混合料老化程度鉴别
16
作者 朱怡烁 张维 胡锦江 《传感器与微系统》 北大核心 2025年第4期74-77,82,共5页
为实现沥青混合料老化程度的分类识别,本文基于傅里叶变换红外(FTIR)光谱技术,采用无信息变量消除(UVE)方法结合浣熊优化算法(COA)优化支持向量机(SVM),建立了分类识别模型。首先,采集3种不同老化程度的沥青混合料红外光谱数据,并运用S-... 为实现沥青混合料老化程度的分类识别,本文基于傅里叶变换红外(FTIR)光谱技术,采用无信息变量消除(UVE)方法结合浣熊优化算法(COA)优化支持向量机(SVM),建立了分类识别模型。首先,采集3种不同老化程度的沥青混合料红外光谱数据,并运用S-G平滑+标准正态变量(SNV)变换对原始光谱进行预处理;再用UVE算法减少光谱冗余信息,从7157个变量中获得了1197个变量;最后引入COA对SVM惩罚因子C和核函数半径σ优化,建立识别模型,并与粒子群优化(PSO)算法、鲸鱼优化算法(WOA)对SVM优化效果进行对比。结果表明:经UVE进行光谱变量筛选明显提高了模型精度,UVE-COA-SVM训练集和测试集正确率均为100%,优于UVE-PSO-SVM和UVE-WOA-SVM,该方法可用于沥青混合料老化程度识别模型的建立。 展开更多
关键词 沥青混合料 傅里叶变换红外光谱 浣熊优化算法 支持向量 老化识别
在线阅读 下载PDF
运用GASVM-NSGA-Ⅱ的永磁辅助开关磁阻电机多目标优化方法
17
作者 黄朝志 原红卫 耿永民 《机械科学与技术》 北大核心 2025年第4期592-600,共9页
为降低永磁辅助开关磁阻电机(Permanent magnet assisted switched reluctance motor,PMa-SRM)的转矩脉动、提高其平均转矩,提出一种将遗传算法优化的支持向量机(Genetic algorithm optimizes support vector machine,GASVM)与非支配进... 为降低永磁辅助开关磁阻电机(Permanent magnet assisted switched reluctance motor,PMa-SRM)的转矩脉动、提高其平均转矩,提出一种将遗传算法优化的支持向量机(Genetic algorithm optimizes support vector machine,GASVM)与非支配进化算法(Non-dominated sorting genetic algorithmⅡ,NSGA-Ⅱ)结合的混合多目标优化方法。首先介绍了PMa-SRM结构,通过田口法建立了实验样本数据,并通过方差分析分析了开通角、关断角、极靴角对PMa-SRM转矩脉动和平均转矩的影响。然后通过GASVM分别建立开通角、关断角、极靴角与PMa-SRM转矩脉动和平均转矩的预测模型。最后采用了NSGA-Ⅱ对预测模型进行全局寻优,并从NSGA-Ⅱ生成的Pareto前沿中选取最优设计。通过对比优化前后电机的输出性能以及样机转矩与振动实验,验证了运用GASVM-NSGA-Ⅱ优化设计方法的有效性。 展开更多
关键词 永磁辅助开关磁阻电 转矩脉动 多目标优化 遗传算法优化支持向量 NSGA-
在线阅读 下载PDF
求解非半正定核Huber-支持向量回归机问题的序列最小最优化算法 被引量:9
18
作者 周晓剑 马义中 +2 位作者 朱嘉钢 刘利平 汪建均 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第9期1178-1184,共7页
序列最小最优化(SMO)算法是求解大型支持向量机(SVM)问题的有效算法.已有的算法都要求核函数是正定的或半正定的,从而使其应用受到限制.针对这种缺点,本文提出一种新的的SMO算法,可求解非半正定核Huber-SVR问题.提出的算法在保证收敛的... 序列最小最优化(SMO)算法是求解大型支持向量机(SVM)问题的有效算法.已有的算法都要求核函数是正定的或半正定的,从而使其应用受到限制.针对这种缺点,本文提出一种新的的SMO算法,可求解非半正定核Huber-SVR问题.提出的算法在保证收敛的前提下可使非半正定Huber-SVR能够达到比较理想的回归精度,因而具有一定的理论意义和实用价值. 展开更多
关键词 支持向量 非半正定核 序列最小最优化算法 Huber-支持向量回归
在线阅读 下载PDF
基于粒子群优化-支持向量机方法的下肢肌电信号步态识别 被引量:20
19
作者 高发荣 王佳佳 +2 位作者 席旭刚 佘青山 罗志增 《电子与信息学报》 EI CSCD 北大核心 2015年第5期1154-1159,共6页
为提高下肢表面肌电信号步态识别的准确性和实时性,该文提出一种基于粒子群优化(PSO)算法优化支持向量机(SVM)的模式识别方法。首先对消噪后的肌电信号提取积分肌电值和方差作为特征样本,然后利用PSO算法优化SVM的惩罚参数和核函数参数... 为提高下肢表面肌电信号步态识别的准确性和实时性,该文提出一种基于粒子群优化(PSO)算法优化支持向量机(SVM)的模式识别方法。首先对消噪后的肌电信号提取积分肌电值和方差作为特征样本,然后利用PSO算法优化SVM的惩罚参数和核函数参数,最后利用步态动作的肌电信号样本数据对构造的SVM分类器进行训练、测试。实验结果表明PSO-SVM分类器对下肢正常行走5个步态的识别率,明显高于未经参数优化的SVM分类器,优化后平均识别率达到97.8%,并兼顾了分类的准确性和自适应性。 展开更多
关键词 模式识别 步态分析 肌电信号 粒子群优化 支持向量
在线阅读 下载PDF
基于支持向量机-改进型鱼群算法的CO_2优化调控模型 被引量:11
20
作者 辛萍萍 张珍 +3 位作者 王智永 胡瑾 邵志成 张海辉 《农业机械学报》 EI CAS CSCD 北大核心 2017年第6期249-256,共8页
提出了融合支持向量机-改进型鱼群算法的CO_2优化调控模型,为CO_2精准调控提供定量依据。设计了嵌套试验,采集不同温度、光子通量密度、CO_2浓度组合下的黄瓜光合速率,以此构建基于支持向量机的黄瓜光合速率预测模型;以预测模型网络为... 提出了融合支持向量机-改进型鱼群算法的CO_2优化调控模型,为CO_2精准调控提供定量依据。设计了嵌套试验,采集不同温度、光子通量密度、CO_2浓度组合下的黄瓜光合速率,以此构建基于支持向量机的黄瓜光合速率预测模型;以预测模型网络为目标函数,采用改进型鱼群算法实现二氧化碳饱和点寻优,获得不同温度、光子通量密度组合条件的CO_2饱和点,进而构建CO_2优化调控模型。异校验结果表明,CO_2饱和点实测值与预测值相关系数为0.965,最大相对误差3.056%。提出的CO_2优化调控模型可动态预测CO_2饱和点,为实现设施CO_2精准调控提供了可行思路。 展开更多
关键词 CO2优化调控模型 支持向量算法 改进型鱼群算法 光合速率 CO2饱和点
在线阅读 下载PDF
上一页 1 2 102 下一页 到第
使用帮助 返回顶部