期刊文献+
共找到221篇文章
< 1 2 12 >
每页显示 20 50 100
多目标优化灰狼算法改进长短期记忆网络的睡眠分期研究
1
作者 高鹏强 丁顺良 +3 位作者 宛磊 李奎 吴广良 高建设 《重庆理工大学学报(自然科学)》 北大核心 2025年第5期98-106,共9页
由于现有睡眠分期方法下N1期分期精度较低,提出一种基于多目标优化灰狼算法改进的长短期记忆网络睡眠分期模型。该模型通过选用不同收敛因子,优化灰狼算法的适应度函数,自动调节LSTM网络隐藏层节点,选取差分算法对灰狼位置迭代进行优化... 由于现有睡眠分期方法下N1期分期精度较低,提出一种基于多目标优化灰狼算法改进的长短期记忆网络睡眠分期模型。该模型通过选用不同收敛因子,优化灰狼算法的适应度函数,自动调节LSTM网络隐藏层节点,选取差分算法对灰狼位置迭代进行优化,跳出局部最优解;选取现有原始ISRUC-Sleep数据集,求取多种时域,频域α、β、δ、θ波能量占比,以及非线性特征复合多尺度排列熵等指标,代入DE-GWO-LSTM模型中进行分期计算,结果表明模型准确率为88.6%,对于N1期的睡眠分期精度达70%以上,优于其他模型。 展开更多
关键词 睡眠分期 灰狼算法 长短期记忆网络 差分算法
在线阅读 下载PDF
基于树状结构Parzen估计器优化长短期记忆神经网络的燃煤机组NO_(x)生成浓度预测
2
作者 陈东升 梁中荣 +3 位作者 郑国 何荣强 屈可扬 甘云华 《中国电机工程学报》 北大核心 2025年第7期2710-2718,I0022,共10页
建立更准确的NO_(x)生成浓度预测模型对于燃煤机组减少NO_(x)排放,降低脱硝成本具有重大意义。搭建NO_(x)生成模型基于机组相关变量,同时依赖模型结构设计,设计模型结构的参数称为超参数。进行合理的数据处理与超参数设定,能够有效提升N... 建立更准确的NO_(x)生成浓度预测模型对于燃煤机组减少NO_(x)排放,降低脱硝成本具有重大意义。搭建NO_(x)生成模型基于机组相关变量,同时依赖模型结构设计,设计模型结构的参数称为超参数。进行合理的数据处理与超参数设定,能够有效提升NO_(x)预测模型精度与泛化性。该文提出一种基于树状结构Parzen估计器优化长短期记忆(tree-structure parzen estimator optimized long short-term memory neural network,TPE-LSTM)神经网络的NO_(x)生成浓度预测模型。基于某330 MW燃煤机组的历史运行数据,获取NO_(x)生成相关变量参数,将模型结构参数与NO_(x)相关变量参数的时间序列窗口长度以及主成分数量相互耦合,组成一类新的超参数;通过优化改进后的超参数取值,构建基于长短期记忆(long short-term memory,LSTM)神经网络的NO_(x)生成浓度预测模型;将所提出的超参数优化后的NO_(x)预测模型与基于未优化的LSTM模型、采用粒子群优化的LSTM(particle swarm optimization optimized LSTM,PSO-LSTM)模型对比,预测结果表明,TPE-LSTM预测模型具有较好的模型精度与泛化能力。 展开更多
关键词 燃煤锅炉 NO_(x)生成浓度预测 树状结构Parzen估计器 超参数优化 长短期记忆神经网络
在线阅读 下载PDF
基于长短期记忆网络的仿生锤头压力曲线优化
3
作者 徐永森 徐雪萌 +3 位作者 刘权 李颍鹏 吴人鸿 张汉山 《包装与食品机械》 北大核心 2025年第3期96-104,共9页
针对传统压曲机在表面提浆效果和含水率均匀性上不及人工踩曲的问题,提出一种基于长短期记忆(LSTM)网络的仿生压力曲线优化方法。通过柔性足底压力传感器采集人工踩曲动态力学数据,利用LSTM模型进行时序预测,标准化处理生成优化曲线,并... 针对传统压曲机在表面提浆效果和含水率均匀性上不及人工踩曲的问题,提出一种基于长短期记忆(LSTM)网络的仿生压力曲线优化方法。通过柔性足底压力传感器采集人工踩曲动态力学数据,利用LSTM模型进行时序预测,标准化处理生成优化曲线,并应用于多工位仿生锤头。试验结果表明,施加优化圧力曲线后,曲块含水率均匀因子从5.91提升至6.35,提浆面积比从76.85%提升至82.36%,曲块含水率与提浆效果均显著提升。研究结果为机械制曲智能化提供数据驱动的标准化解决方案。 展开更多
关键词 长短期记忆网络 仿生压曲 压力曲线优化
在线阅读 下载PDF
基于减平均优化算法与双向长短期记忆网络的锂离子电池健康状态估算
4
作者 李建萱 林琛 周忠凯 《储能科学与技术》 北大核心 2025年第1期358-369,共12页
准确的健康状态(state of health,SOH)估算可以确保锂离子电池安全可靠运行,延长其使用寿命。针对当前许多健康特征无法表征电池老化机理,异常工况时无法准确追踪SOH变化趋势的问题,本文提出一种经验模型与数据驱动相结合的SOH估算方法... 准确的健康状态(state of health,SOH)估算可以确保锂离子电池安全可靠运行,延长其使用寿命。针对当前许多健康特征无法表征电池老化机理,异常工况时无法准确追踪SOH变化趋势的问题,本文提出一种经验模型与数据驱动相结合的SOH估算方法。将锂离子电池负极固体电解质界面(SEI)膜增厚机理融入Arrhenius定律中构建经验模型,然后采用最小二乘法进行参数辨识,并分别计算每个参数与容量的Spearman相关系数。结果表明,它们与容量衰退都具有强相关性,可以作为估算SOH的健康特征。此外,为了克服双向长短期记忆(bidirectional long and short term memory,BiLSTM)网络参数较多且容易陷入过拟合的问题,本文使用减平均优化(subtraction average based optimizer,SABO)算法对BiLSTM的超参数进行寻优,建立SOH估算模型。最后,采用实验测试数据与美国航空航天局(National Aeronautics and Space Administration,NASA)数据验证了所提方法的适应性,并与长短期记忆(long and short-term memory,LSTM)网络、双向长短期记忆网络以及粒子群优化(particle swarm optimization,PSO)的双向长短期记忆网络3种算法的估算结果进行对比。结果表明,采用SABO-BiLSTM算法估算4节电池SOH的平均绝对百分比误差分别为0.043%、0.053%、0.259%、0.230%,相较于LSTM降低了94.58%、 92.85%、 88.65%、 90.13%,相较于BiLSTM降低了89.11%、91.60%、77.90%、76.41%,相较于PSO-BiLSTM降低了58.65%、58.91%、65.37%、69.29%。 展开更多
关键词 锂离子电池 Arrhenius定律 减平均优化算法 双向长短期记忆网络
在线阅读 下载PDF
基于长短期记忆神经网络的多级涡轮过渡态叶尖间隙预测 被引量:1
5
作者 杨超 毛军逵 +3 位作者 杨悦 王飞龙 邵发宁 毕帅 《推进技术》 北大核心 2025年第2期248-257,共10页
为了解决多级涡轮模型在高维度变量的复杂空间耦合效应下向高效、高精度过渡态叶尖间隙预测提出的挑战,本文搭建了基于贝叶斯优化和多任务学习算法的长短期记忆神经网络(BO-MTLLSTM)多级涡轮过渡态叶尖间隙智能预测模型,以实现过渡态叶... 为了解决多级涡轮模型在高维度变量的复杂空间耦合效应下向高效、高精度过渡态叶尖间隙预测提出的挑战,本文搭建了基于贝叶斯优化和多任务学习算法的长短期记忆神经网络(BO-MTLLSTM)多级涡轮过渡态叶尖间隙智能预测模型,以实现过渡态叶尖间隙高效、高精度预测。在BOMTL-LSTM模型中,通过高效的长短期记忆神经网络(Long Short-Term Memory,LSTM)模型对基于有限元分析方法得到的高精度过渡态叶尖间隙时序信息进行学习,并在LSTM模型的基础上,引入多任务学习(Multi-Task Learning,MTL)用于多个叶尖间隙预测任务之间的信息共享,以缓解高维度变量复杂空间耦合作用的影响。同时,结合贝叶斯优化(Bayesian Optimization,BO)对神经网络模型超参数进行全局自动优化,提升预测精度与训练效率。结果表明,相比于传统计算模型,BO-MTL-LSTM模型在同等预测精度下,能够在秒量级时间内完成一个完整发动机历程的多级涡轮过渡态叶尖间隙的预测。此外,相比常规的BO-LSTM模型,BO-MTL-LSTM模型的均方根误差和平均绝对误差分别降低了84.39%和89.21%,模型训练时间缩短了30%,该模型可以实现多级叶尖间隙的高效、精准预测。 展开更多
关键词 多级涡轮 叶尖间隙预测 多任务学习 长短期记忆神经网络 贝叶斯优化
在线阅读 下载PDF
鲸鱼优化算法-双向长短期记忆神经网络用于断路器机械剩余寿命的预测研究 被引量:13
6
作者 李家豪 王青于 +4 位作者 范玥霖 史石峰 彭宗仁 曹培 徐鹏 《高电压技术》 EI CAS CSCD 北大核心 2024年第1期250-262,共13页
低压断路器的安全可靠是电力系统能否稳定运行的关键一环,因此对断路器进行退化趋势预测和剩余寿命评估具有重要意义。基于鲸鱼优化算法(whale optimization algorithm,WOA)和双向长短期记忆神经网络(bidirectional long short-term mem... 低压断路器的安全可靠是电力系统能否稳定运行的关键一环,因此对断路器进行退化趋势预测和剩余寿命评估具有重要意义。基于鲸鱼优化算法(whale optimization algorithm,WOA)和双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)提出了一种断路器操动机构剩余寿命的预测方法,首先采用Pearson相关系数法对获得的原始监测数据进行筛选,选择与断路器开断次数相关度较高的数据作为关键退化特征量,基于主成分分析法进行数据融合获得能够综合表征断路器运行状态的健康指数;随后使用滑动时间窗的方法对健康指数时间序列进行重构,再通过WOA-Bi LSTM寻优获得的最佳模型对健康指数进行时间序列预测,从而获得断路器未来多步的退化趋势;最后再根据设定的失效阈值,确定断路器操动机构的剩余寿命。实例验证表明,该文提出的混合预测模型预测精度最高可达96.43%,相比于其他传统预测模型显著提高,对于断路器的实际运维工作具有一定的指导意义。 展开更多
关键词 低压断路器 退化趋势 剩余寿命 双向长短期记忆网络 鲸鱼优化
在线阅读 下载PDF
考虑时间滞后的贝叶斯优化长短期记忆网络滑坡土压力预测模型:以福建省南平市公路边坡为例 被引量:1
7
作者 蓝小美 聂闻 +3 位作者 谷潇 郑文明 卢焱保 简文彬 《科学技术与工程》 北大核心 2024年第29期12468-12478,共11页
公路边坡失稳引发的滑坡等灾害问题对人们的生活影响重大,建立滑坡预测模型对地质灾害防治工作具有重大意义。以福建省南平市公路边坡为例,提出基于贝叶斯优化算法(Bayesian optimization algorithm,BOA)的长短期记忆网络(long short te... 公路边坡失稳引发的滑坡等灾害问题对人们的生活影响重大,建立滑坡预测模型对地质灾害防治工作具有重大意义。以福建省南平市公路边坡为例,提出基于贝叶斯优化算法(Bayesian optimization algorithm,BOA)的长短期记忆网络(long short term memory,LSTM)模型,探究土压力变化对边坡稳定性的影响。该模型综合考虑了多个滑坡影响因素的相关性,尤其是各个影响因素之间的时间滞后性,并对滞后时间进行计算。对LSTM模型4个超参数(时间步长、隐藏元数量、迭代次数和批大小)进行自动搜索和寻优,解决了用LSTM模型建立滑坡预测模型时需要手动调参的问题。为了验证该模型的准确性和有效性,将该模型与循环神经网络(recurrent neural network,RNN)、LSTM模型进行对比,以南平市公路边坡土压力的监测数据集作为对照。结果表明:相对于其他两种模型,BOA-LSTM模型的均方误差(mean square error,MSE)、平均绝对误差(mean absolute error,MAE)和平均绝对百分比误差(mean absolute percentage error,MAPE)分别降低了52.4%和59.9%,28.8%和30.1%,30.2%和29.9%,预测精度从95%左右提高到96.56%,判定系数也更加接近于1,说明该模型可以更加准确地预测土压力的变化,为边坡变形稳定性分析提供有效的数据支撑。 展开更多
关键词 土压力 贝叶斯优化 长短期记忆网络 边坡变形 边坡稳定性
在线阅读 下载PDF
基于特征优化和混合改进灰狼算法优化BiLSTM网络的短期光伏功率预测 被引量:2
8
作者 赵如意 王晓辉 +3 位作者 郑碧煌 李道兴 高毅 郭鹏天 《电网技术》 北大核心 2025年第1期209-222,I0080-I0084,共19页
为解决光伏序列的强噪音干扰以及单一模型在光伏功率预测方面精度偏低和泛化性较差的问题,提出了一种基于特征优化和混合改进灰狼算法优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的短期光伏功率预测方法。首... 为解决光伏序列的强噪音干扰以及单一模型在光伏功率预测方面精度偏低和泛化性较差的问题,提出了一种基于特征优化和混合改进灰狼算法优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的短期光伏功率预测方法。首先,运用互信息算法进行输入数据的变量选择,以消除冗余变量。其次,通过互补集合经验模态分解和改进的小波阈值算法对筛选后的数据进行特征重构,旨在降低数据中的噪声干扰并完成输入变量的特征优化。随后,结合改进的Tent混沌映射、非线性递减因子、动态权重策略和差分进化算法对标准灰狼优化算法进行混合优化,以确定双向长短期记忆神经网络的最优超参数组合,并引入注意力机制以挖掘数据中的关键时序信息,最终构建出一种新型的短期光伏功率预测模型。仿真实验表明,相较于最小二乘支持向量机、长短期记忆网络和双向长短期记忆网络,所提模型在晴天、多云、阴天和降雨等不同工况下的均方根误差平均分别降低了12.45%、7.95%和5.37%,显示出优秀的预测性能、良好的泛化能力和潜在的工程应用价值。 展开更多
关键词 变量选择 互补集合经验模态分解 特征重构 混合改进优化灰狼算法 双向长短期记忆网络 注意力机制
在线阅读 下载PDF
基于双向长短期记忆网络含间接健康指标的锂电池SOH估计 被引量:16
9
作者 方斯顿 刘龙真 +3 位作者 孔赖强 牛涛 陈冠宏 廖瑞金 《电力系统自动化》 EI CSCD 北大核心 2024年第4期160-168,共9页
快速准确地对锂离子电池进行全寿命周期的健康状态(SOH)估计有助于提高储能设备的安全可靠性。提出一种基于间接健康指标(IHI)和鲸鱼优化算法(WOA)优化的双向长短期记忆(BiLSTM)网络相结合的锂电池SOH估计模型,该模型考虑了未来状态对当... 快速准确地对锂离子电池进行全寿命周期的健康状态(SOH)估计有助于提高储能设备的安全可靠性。提出一种基于间接健康指标(IHI)和鲸鱼优化算法(WOA)优化的双向长短期记忆(BiLSTM)网络相结合的锂电池SOH估计模型,该模型考虑了未来状态对当前SOH的影响。首先,对锂电池恒流恒压(CC-CV)充放电过程进行分析,提取出多个随充放电循环动态变化的电压、电流、温度的时间特征作为IHI,并加入放电负载电压下降时间这一指标;然后,通过相关性分析,从各IHI中筛选出和容量关联度高的IHI作为输入特征;最后,建立基于WOA优化的BiLSTM网络的电池SOH估计模型,并利用美国国家航天航空局锂电池数据集对2个不同工况下的电池SOH进行估计。结果表明,所提方法可有效提高SOH的估计精度。 展开更多
关键词 健康状态 锂离子电池 间接健康指标 鲸鱼优化算法 双向长短期记忆网络
在线阅读 下载PDF
基于改进灰狼算法优化长短期记忆网络的光伏功率预测 被引量:38
10
作者 薛阳 燕宇铖 +3 位作者 贾巍 衡雨曦 张舒翔 秦瑶 《太阳能学报》 EI CAS CSCD 北大核心 2023年第7期207-213,共7页
为提高光伏发电功率预测的准确性,提出一种基于改进自适应因子与精英反向学习策略的改进灰狼算法(IGWO),用以优化长短期记忆网络(LSTM)预测模型。利用IGWO优化LSTM全连接层参数,建立IGWO-LSTM组合模型预测光伏功率,具有较好的收敛速度... 为提高光伏发电功率预测的准确性,提出一种基于改进自适应因子与精英反向学习策略的改进灰狼算法(IGWO),用以优化长短期记忆网络(LSTM)预测模型。利用IGWO优化LSTM全连接层参数,建立IGWO-LSTM组合模型预测光伏功率,具有较好的收敛速度与求解效率,也可有效避免局部最优解。最后基于常州某光伏发电站实时数据进行仿真,实验结果表明IGWO-LSTM相对于LSTM光伏功率预测更具准确性。 展开更多
关键词 光伏发电 长短期记忆网络 优化算法 灰狼算法 精英反向学习策略
在线阅读 下载PDF
改进双向长短期记忆神经网络的瓦斯涌出量预测 被引量:3
11
作者 祁云 白晨浩 +3 位作者 代连朋 汪伟 薛凯隆 崔欣超 《安全与环境学报》 CAS CSCD 北大核心 2024年第12期4630-4637,共8页
为提高瓦斯涌出量预测精度,降低煤矿回采工作面瓦斯涌出超限事故的风险,针对瓦斯涌影响因素众多、难以预测等问题,采用灰狼优化算法(Grey Wolf Optimization,GWO)双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM... 为提高瓦斯涌出量预测精度,降低煤矿回采工作面瓦斯涌出超限事故的风险,针对瓦斯涌影响因素众多、难以预测等问题,采用灰狼优化算法(Grey Wolf Optimization,GWO)双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,BiLSTM)的组合模型预测瓦斯涌出量。首先,运用主成分分析法(Principal Components Analysis,PCA)处理瓦斯涌出影响因素,降低数据维度,以减少模型计算时的负担;其次,利用GWO优化BiLSTM模型的学习率(best_lr)、隐藏层层数(best_hd)以及正则化系数(best_l2),可有效避免局部最优解问题,并采用决定系数(R-Square,R^(2))、均方根误差(Root Mean Square Error,RMSE)和平均绝对误差(Mean Absolute Error,MAE)对所建模型预测的结果进行综合评价分析;最后,将该模型应用于内蒙古自治区某矿回采工作面预测瓦斯涌出量。结果显示:PCA GWO BiLSTM组合模型相比于长短期记忆神经网络(Long Short-Term Memory,LSTM)和双向长短期记忆神经网络对应的单一模型,其MAE分别降低20.81%、30.17%,RMSE分别降低0.063、0.142,R^(2)则分别提高了0.023、0.075,表明该模型在复杂因素条件下具有更高的精准度、泛化性和鲁棒性。 展开更多
关键词 安全工程 瓦斯涌出 灰狼优化算法 双向长短期记忆神经网络 主成分分析法
在线阅读 下载PDF
基于粒子群优化–长短期记忆网络模型的变压器油中溶解气体浓度预测方法 被引量:61
12
作者 刘可真 苟家萁 +3 位作者 骆钊 王科 徐肖伟 赵勇军 《电网技术》 EI CSCD 北大核心 2020年第7期2778-2784,共7页
电力变压器作为电网中传输和变换电能的主要设备,对油中溶解气体的浓度进行有效预测,可为变压器的故障诊断及状态评估技术提供一定的理论依据。鉴于此,提出一种基于粒子群优化算法(particle swarm optimization,PSO)与长短期记忆网络(lo... 电力变压器作为电网中传输和变换电能的主要设备,对油中溶解气体的浓度进行有效预测,可为变压器的故障诊断及状态评估技术提供一定的理论依据。鉴于此,提出一种基于粒子群优化算法(particle swarm optimization,PSO)与长短期记忆网络(long-shorttermmemory,LSTM)的变压器油中溶解气体浓度预测方法。首先该模型以油中溶解的7种特征气体浓度序列作为可视输入;然后通过使用粒子群优化算法对长短期记忆网络中相关超参数进行迭代优化;最后构建PSO-LSTM组合模型对油中溶解气体的浓度进行预测。该模型克服了依据经验选取参数而导致预测精度低的问题。算例分析结果表明,相较于传统预测算法,所提方法可以更好地追踪油中溶解气体浓度的变化规律,提高了预测精度,为电力变压器安全稳定运行提供了有力保障。 展开更多
关键词 变压器 粒子群优化 长短期记忆网络 油中溶解气体 预测
在线阅读 下载PDF
基于贝叶斯优化算法的长短期记忆神经网络模型年径流预测 被引量:21
13
作者 徐冬梅 王逸阳 王文川 《水电能源科学》 北大核心 2022年第12期42-46,共5页
为解决长短期记忆神经网络模型超参数人为确定造成径流预测精度低的问题,将贝叶斯优化算法(BOA)应用于长短期记忆神经网络(LSTM)超参数的率定,构建BOA-LSTM径流预测模型,并研究分析模型超参数对预测精度的影响。采用呼兰河下游兰西水文... 为解决长短期记忆神经网络模型超参数人为确定造成径流预测精度低的问题,将贝叶斯优化算法(BOA)应用于长短期记忆神经网络(LSTM)超参数的率定,构建BOA-LSTM径流预测模型,并研究分析模型超参数对预测精度的影响。采用呼兰河下游兰西水文站1959~2014年相关水文气象数据进行年径流预测及验证,并与麻雀搜索算法(SSA)优化超参数的LSTM神经网络模型(SSA-LSTM)及LSTM神经网络模型进行比较。结果表明,贝叶斯优化算法能更加准确高效地率定模型超参数。同时,研究提出的BOA-LSTM模型为年径流预测提供了一种有效的新方法。 展开更多
关键词 径流预测 长短期记忆神经网络 贝叶斯优化算法 参数优化
在线阅读 下载PDF
基于长短期记忆网络的桁架车身结构轻量化设计优化 被引量:2
14
作者 贾良跃 郝佳 +2 位作者 商曦文 李作轩 阎艳 《计算机集成制造系统》 EI CSCD 北大核心 2023年第10期3317-3330,共14页
为满足特种无人车辆高可靠机动、低成本研制等要求,在特种无人车辆的桁架车身结构设计早期阶段引入结构轻量化思想。为实现车身结构轻量化,提出基于长短期记忆网络的设计优化方法(LSTM-DO),利用LSTM-DO的快速搜索、高精度优化能力解决... 为满足特种无人车辆高可靠机动、低成本研制等要求,在特种无人车辆的桁架车身结构设计早期阶段引入结构轻量化思想。为实现车身结构轻量化,提出基于长短期记忆网络的设计优化方法(LSTM-DO),利用LSTM-DO的快速搜索、高精度优化能力解决车身结构设计优化中收敛慢、局部最优等问题。建立了某无人车辆桁架车身参数化模型与有限元分析模型,采用代理模型技术提高设计优化过程中车身结构性能评估速度,结合LSTM-DO优化方法快速准确地生成方案。对比了常用的梯度优化算法与启发式优化算法,所提LSTM-DO方法在最优方案性能、收敛速度和鲁棒性方面均展现出明显的优势。 展开更多
关键词 桁架车身 结构轻量化 优化设计 长短期记忆网络
在线阅读 下载PDF
基于长短期记忆神经网络模型的分层注水优化方法 被引量:8
15
作者 赵洪绪 柴世超 +4 位作者 毛敏 于伟强 李金泽 李庆庆 刘均荣 《中国海上油气》 CAS CSCD 北大核心 2023年第4期127-137,共11页
分层注水是改善层间注采矛盾、提高水驱开发效果的一种重要手段。基于油藏数值模拟的分层注水优化存在地质模型不确定性强、所需数据多、计算耗时长等缺点,数据驱动的优化方法可有效克服上述缺点。以井组中所有注水井的分层注水层段为... 分层注水是改善层间注采矛盾、提高水驱开发效果的一种重要手段。基于油藏数值模拟的分层注水优化存在地质模型不确定性强、所需数据多、计算耗时长等缺点,数据驱动的优化方法可有效克服上述缺点。以井组中所有注水井的分层注水层段为考察对象,采用平均不纯度减少(MDI)方法筛选影响每口生产井产液量和含水率的主要注水层段,以此为基础利用注水井分层注水量以及生产井产液量和含水率时序数据建立长短期记忆神经网络(LSTM)深度学习预测模型,结合粒子群优化算法(PSO)实现分层注水量优化。实例应用表明:基于注水井分层注水量的LSTM模型可以准确预测产液量和含水率,平均误差分别为0.5%和1.7%;在总注水量基本保持不变的情况下,优化后井组产油量增加12.2%、平均含水率下降4.2个百分点,实现较好的增油控水目的,为深度学习在分层注水优化方面的应用研究提供了一种新的方法。 展开更多
关键词 分层注水 生产优化 平均不纯度减少 长短期记忆神经网络 粒子群优化算法
在线阅读 下载PDF
基于鲸鱼优化算法改进长短期记忆神经网络的资源推荐 被引量:8
16
作者 仇焕青 陈曙光 +1 位作者 龚芝 张福泉 《济南大学学报(自然科学版)》 CAS 北大核心 2023年第3期309-315,共7页
为了改善资源推荐算法的性能,提出基于鲸鱼优化算法(WOA)改进长短期记忆神经网络(LSTM)的资源推荐算法;首先提取资源和用户特征,构建特征差异值加权函数;然后,以资源-用户特征作为输入,建立基于LSTM的资源推荐算法,通过输入门、遗忘门... 为了改善资源推荐算法的性能,提出基于鲸鱼优化算法(WOA)改进长短期记忆神经网络(LSTM)的资源推荐算法;首先提取资源和用户特征,构建特征差异值加权函数;然后,以资源-用户特征作为输入,建立基于LSTM的资源推荐算法,通过输入门、遗忘门、输出门及记忆节点对历史资源推荐数据按权重进行遗忘与筛选,有选择性地挑选部分数据进行循环迭代训练;考虑到LSTM的门操作需要设置的参数较多,引入WOA进行参数智能优化求解,提出WOA-LSTM算法,以提高LSTM的参数优化的精度及效率。结果表明,通过合理设置WOA参数,可以有效改善LSTM的资源推荐性能,与常用资源推荐算法相比,所提出的WOA-LSTM算法具有更高的推荐精度及稳定性。 展开更多
关键词 资源推荐 长短期记忆神经网络 鲸鱼优化算法 特征差异值
在线阅读 下载PDF
基于鲸鱼优化-长短期记忆网络模型的机-热老化绝缘纸剩余寿命预测方法 被引量:19
17
作者 于永进 姜雅男 李长云 《电工技术学报》 EI CSCD 北大核心 2022年第12期3162-3171,共10页
换流变压器作为特/超高压直流输电系统中的关键设备,对变压器用绝缘纸剩余寿命进行有效预测,可为换流变压器的运行维护提供一定的理论依据,鉴于此,提出一种基于鲸鱼优化算法(WOA)和长短期记忆网络(LSTM)的预测方法。首先,结合绝缘纸加速... 换流变压器作为特/超高压直流输电系统中的关键设备,对变压器用绝缘纸剩余寿命进行有效预测,可为换流变压器的运行维护提供一定的理论依据,鉴于此,提出一种基于鲸鱼优化算法(WOA)和长短期记忆网络(LSTM)的预测方法。首先,结合绝缘纸加速机-热老化实验及试样的机械、电气性能指标和对应裂解产物的糠醛含量,由主成分分析法(PCA)对聚合度、糠醛含量和特征频率下介质损耗因数等表征绝缘纸老化的多特征量进行融合;获得综合评估指标与绝缘纸抗张强度间的量化关系,并依此将绝缘性能优良和严重劣化时对应的抗张强度分别作为正、负理想值;进一步构建贴近度构造退化指标序列并将其作为模型输入。然后,利用鲸鱼优化算法对长短期记忆网络的关键参数进行寻优。最后,构建WOA-LSTM模型对绝缘纸剩余寿命进行预测。研究表明,所提出的WOA-LSTM模型既纳入了可表征绝缘纸老化状态的多个特征量,亦可显著提高剩余寿命的预测精度,为换流变压器绝缘系统安全稳定运行提供有力保障。 展开更多
关键词 鲸鱼优化 长短期记忆网络 机-热协同作用 多特征融合 剩余寿命预测
在线阅读 下载PDF
基于海洋捕食者算法优化的长短期记忆神经网络径流预测 被引量:26
18
作者 胡顺强 崔东文 《中国农村水利水电》 北大核心 2021年第2期78-82,90,共6页
为提高径流预测精度,研究提出海洋捕食者算法(MPA)与长短期记忆(LSTM)神经网络相结合的径流预测方法。通过6个仿真函数对MPA、粒子群优化(PSO)算法进行测试,利用MPA优化LSTM隐藏层神经元数、训练次数等关键参数,基于主成分分析(PCA)降... 为提高径流预测精度,研究提出海洋捕食者算法(MPA)与长短期记忆(LSTM)神经网络相结合的径流预测方法。通过6个仿真函数对MPA、粒子群优化(PSO)算法进行测试,利用MPA优化LSTM隐藏层神经元数、训练次数等关键参数,基于主成分分析(PCA)降维和不降维处理分别建立PCA-MPA-LSTM、MPA-LSTM径流预测模型,利用云南省落却站实测数据对PCA-MPA-LSTM、MPA-LSTM模型进行训练及预测,结果与PCA-LSTM、LSTM、PCA-MPA-SVM、MPA-SVM、PCA-MPA-BP、MPA-BP模型的训练、预测结果进行比较。结果表明:①MPA仿真效果优于PSO算法,具有较好的寻优精度和全局搜索能力。②PCA-MPA-LSTM、MPA-LSTM模型对实例拟合、预测的平均相对误差分别为1.18%、2.35%和1.94%、1.96%,预测效果优于其他6种模型,具有较好的预测精度和泛化能力。③采用MPA优化LSTM关键参数能有效提高LSTM泛化能力和预测精度;数据降维模型的预测精度优于对应未降维模型的预测精度,数据降维处理能有效改善模型的预测效果。 展开更多
关键词 径流预测 长短期记忆神经网络 海洋捕食者算法 仿真验证 数据降维 参数优化
在线阅读 下载PDF
采用特征变量选择和长短期记忆网络的高速公路交通事件检测研究 被引量:4
19
作者 张兵 张校梁 +2 位作者 屈永强 上官小荣 邹少权 《重庆理工大学学报(自然科学)》 CAS 北大核心 2023年第4期157-165,共9页
为提升高速公路交通事件检测效果,依据交通事件发生时上、下游交通流参数的变化特性,构建一组相对全面的交通事件检测初始特征变量集,使用随机森林-交叉验证递归特征消除(RF-RFECV)算法筛选出重要特征变量。利用重要特征变量作为输入训... 为提升高速公路交通事件检测效果,依据交通事件发生时上、下游交通流参数的变化特性,构建一组相对全面的交通事件检测初始特征变量集,使用随机森林-交叉验证递归特征消除(RF-RFECV)算法筛选出重要特征变量。利用重要特征变量作为输入训练长短期记忆网络(LSTM),通过贝叶斯优化算法(BOA)优化LSTM网络的超参数。使用真实高速公路数据进行验证和对比分析,采用Borderline-SMOTE解决交通数据集的不平衡问题。实验结果表明:筛选出对交通事件检测更为敏感的重要特征变量,可以提高检测精度,LSTM的检测效果也明显优于随机森林(RF)和支持向量机(SVM)。 展开更多
关键词 交通事件检测 特征变量选择 贝叶斯优化 长短期记忆网络
在线阅读 下载PDF
基于长短期记忆神经网络的健康状态估算 被引量:1
20
作者 肖仁鑫 宋新月 +2 位作者 张梦帆 夏雪磊 肖佳鹏 《农业装备与车辆工程》 2020年第4期77-81,共5页
当前电池健康状态估算与预测在处理大量电池数据、时间间隔较长存在一定缺陷。长短期记忆神经网络算法在解决该问题时效果明显。在完成电池循环充放电实验基础之上,分析和提取电池放电过程中外部信号变化的特征指标,以电池放电数据中放... 当前电池健康状态估算与预测在处理大量电池数据、时间间隔较长存在一定缺陷。长短期记忆神经网络算法在解决该问题时效果明显。在完成电池循环充放电实验基础之上,分析和提取电池放电过程中外部信号变化的特征指标,以电池放电数据中放电容量、放电时间、循环次数训练并建立了长短期记忆神经网络预测模型,采用3种不同的自适应学习率优化算法对学习训练部分进行优化,最后对比分析模型预测的准确程度。结果表明,长短期记忆神经网络估算电池健康状态的误差小于5%,证明预测模型的有效性。 展开更多
关键词 锂离子电池 健康状态 长短期记忆神经网络算法 学习率优化
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部