滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来...滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。展开更多
针对在阵列孔径、阵元数目、最小阵元间距等多约束条件下的稀布矩形平面阵列天线优化问题,提出了基于改进型灰狼优化(improved grey wolf optimizer,IGWO)算法和窗函数加权的稀布矩形平面阵列天线综合方法。首先,利用Tent混沌映射、非...针对在阵列孔径、阵元数目、最小阵元间距等多约束条件下的稀布矩形平面阵列天线优化问题,提出了基于改进型灰狼优化(improved grey wolf optimizer,IGWO)算法和窗函数加权的稀布矩形平面阵列天线综合方法。首先,利用Tent混沌映射、非线性收敛因子、优势狼动态置信策略和对立学习策略对灰狼优化(grey wolf optimizer,GWO)算法进行改进,增加算法的种群多样性和跳出局部最优的能力。然后,利用窗函数对阵列单元进行加权,生成位置分布矩阵,减少稀疏矩阵优化时间,提高优化效率。最后,利用位置分布矩阵生成稀疏阵列,再运用IGWO算法进行多约束条件的稀布优化。为验证所提方法的有效性进行了仿真实验,实验结果表明,本文方法可以有效提高阵列天线的性能,降低峰值旁瓣电平,对于解决在多约束条件下的阵列分布问题,具有一定的工程意义和参考价值。展开更多
变分模态分解(Variational Mode Decomposition,VMD)算法的参数组合的选取会严重影响算法结果,导致滚动轴承故障特征难以提取。针对参数组合选取的问题,提出了一种基于灰狼优化算法(Grey Wolf Optimizer,GWO)寻参优化VMD的滚动轴承故障...变分模态分解(Variational Mode Decomposition,VMD)算法的参数组合的选取会严重影响算法结果,导致滚动轴承故障特征难以提取。针对参数组合选取的问题,提出了一种基于灰狼优化算法(Grey Wolf Optimizer,GWO)寻参优化VMD的滚动轴承故障特征提取方法。首先通过最大峭度法确定信号分解层数,并通过GWO算法寻优,得到最佳的参数组合。然后,通过GWO优化后的惩罚因子和模式数进行VMD分解,得到本征模态函数。最后对模态分量使用希尔伯特变换和归一化处理,进行包络分析,提取滚动轴承故障特征频率。展开更多
针对传统灰狼优化(Grey Wolf Optimization, GWO)算法求解无人机三维路径规划问题时会出现收敛速度慢、容易陷入局部最优等问题,提出一种改进混合灰狼优化算法——CLGWO。基于Cat混沌映射和反向学习策略初始化灰狼种群,为算法全局搜索...针对传统灰狼优化(Grey Wolf Optimization, GWO)算法求解无人机三维路径规划问题时会出现收敛速度慢、容易陷入局部最优等问题,提出一种改进混合灰狼优化算法——CLGWO。基于Cat混沌映射和反向学习策略初始化灰狼种群,为算法全局搜索过程中丰富种群多样性奠定基础;提出新型非线性收敛因子的改进策略,提高算法全局搜索能力。在灰狼位置更新中提出引入狮群优化(Lion Swarm Optimization, LSO)算法的扰动因子和动态权重,使灰狼具有主动的搜索能力,避免因灰狼失去种群多样性而陷入局部最优。为验证改进算法的有效性,进行了8个国际通用的标准测试函数收敛性对比实验和无人机三维路径规划仿真实验。实验结果表明,CLGWO算法在单峰、多峰函数上均有较好的收敛性、较高的寻优精度;三维路径仿真环境下,CLGWO算法的平均路径长度、平均迭代次数、平均运行时间相比于GWO算法分别优化了33%、31%、52%,且路径转折少,能较好地得到全局最优值,验证了CLGWO算法的有效性。展开更多
文摘为了同时优化质子交换膜燃料电池(proton exchange membrane fuel cells,PEMFC)系统的效率和输出功率,文章首先建立PEMFC系统的机理模型,并分析系统效率和输出功率特性;其次针对传统灰狼算法(grey wolf optimizer,GWO)的初始化种群不均匀和易出现早熟收敛的问题,引入佳点集种群初始化策略和非线性收敛因子策略,并由此提出一种改进多目标灰狼优化算法(multi-objective grey wolf optimizer,MOGWO),有效改善了灰狼算法的搜索精度和收敛性能;然后针对改进多目标灰狼优化算法求得的Pareto最优解集,使用TOPSIS评价法得出逼近理想解的最佳解,确定PEMFC系统的最佳运行条件;最后对所提出的MOGWO算法进行仿真验证,结果表明该算法能够有效提高PEMFC系统在实际运行中的输出功率和系统效率。
文摘滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。
文摘针对在阵列孔径、阵元数目、最小阵元间距等多约束条件下的稀布矩形平面阵列天线优化问题,提出了基于改进型灰狼优化(improved grey wolf optimizer,IGWO)算法和窗函数加权的稀布矩形平面阵列天线综合方法。首先,利用Tent混沌映射、非线性收敛因子、优势狼动态置信策略和对立学习策略对灰狼优化(grey wolf optimizer,GWO)算法进行改进,增加算法的种群多样性和跳出局部最优的能力。然后,利用窗函数对阵列单元进行加权,生成位置分布矩阵,减少稀疏矩阵优化时间,提高优化效率。最后,利用位置分布矩阵生成稀疏阵列,再运用IGWO算法进行多约束条件的稀布优化。为验证所提方法的有效性进行了仿真实验,实验结果表明,本文方法可以有效提高阵列天线的性能,降低峰值旁瓣电平,对于解决在多约束条件下的阵列分布问题,具有一定的工程意义和参考价值。
文摘变分模态分解(Variational Mode Decomposition,VMD)算法的参数组合的选取会严重影响算法结果,导致滚动轴承故障特征难以提取。针对参数组合选取的问题,提出了一种基于灰狼优化算法(Grey Wolf Optimizer,GWO)寻参优化VMD的滚动轴承故障特征提取方法。首先通过最大峭度法确定信号分解层数,并通过GWO算法寻优,得到最佳的参数组合。然后,通过GWO优化后的惩罚因子和模式数进行VMD分解,得到本征模态函数。最后对模态分量使用希尔伯特变换和归一化处理,进行包络分析,提取滚动轴承故障特征频率。