为解决我国高灰熔融性煤的利用难题,采用等温热重法,研究了典型贵州高灰熔融性煤焦在不同气化温度及不同水蒸气含量下的气化特性,并采用混合反应模型对试验数据进行处理,求取动力学参数。结果表明,在不同水蒸气含量下,随着气化反应温度...为解决我国高灰熔融性煤的利用难题,采用等温热重法,研究了典型贵州高灰熔融性煤焦在不同气化温度及不同水蒸气含量下的气化特性,并采用混合反应模型对试验数据进行处理,求取动力学参数。结果表明,在不同水蒸气含量下,随着气化反应温度的升高,典型贵州煤焦的反应性提高,气化反应速率的峰值增大,气化反应时间缩短;气化剂中水蒸气含量越多,煤焦反应性越好,气化反应速率的峰值越大,但当水蒸气含量大于30%后差别不明显;典型贵州煤焦与水蒸气反应的反应级数为0.912 9~1.620 9,活化能为149.34~165.12 k J/mol。展开更多
通过X射线衍射图谱分析结合灰熔融性测定,研究了准东煤燃烧过程中的矿物质赋存形态变化及添加NH4H2PO4对准东煤灰分特征和灰熔融特性的影响。试验结果表明,空气气氛下,随着准东煤燃烧温度从800℃升高至1100℃,灰中钠长石、钙铁辉石和蓝...通过X射线衍射图谱分析结合灰熔融性测定,研究了准东煤燃烧过程中的矿物质赋存形态变化及添加NH4H2PO4对准东煤灰分特征和灰熔融特性的影响。试验结果表明,空气气氛下,随着准东煤燃烧温度从800℃升高至1100℃,灰中钠长石、钙铁辉石和蓝方石等熔点较低且熔融性较强矿物质含量升高,灰中主要矿物质皆为助熔性矿物质。煤中添加比例PO4^(3-)/Na≥0.5、温度800℃以上,混煤灰中生成新的Ca(2.71)Mg(0.29)(PO4)2、 Al PO4、 Ca3(PO4)2、Ca9Fe(PO4)7、Ca9Al(PO4)7、Ca2P2O7和Mg2P2O7等高熔点物质。当PO4^(3-)/Na〉 1时,混煤灰熔融性温度明显升高,软化温度由1144℃增加至1418℃(PO4^(3-)/Na=4),煤改善为中等结渣倾向。可见添加NH4H2PO4能够有效抑制低熔点、助熔性含钠矿物生成,促进高熔点物质形成,提高灰熔融特性温度。展开更多
文摘为解决我国高灰熔融性煤的利用难题,采用等温热重法,研究了典型贵州高灰熔融性煤焦在不同气化温度及不同水蒸气含量下的气化特性,并采用混合反应模型对试验数据进行处理,求取动力学参数。结果表明,在不同水蒸气含量下,随着气化反应温度的升高,典型贵州煤焦的反应性提高,气化反应速率的峰值增大,气化反应时间缩短;气化剂中水蒸气含量越多,煤焦反应性越好,气化反应速率的峰值越大,但当水蒸气含量大于30%后差别不明显;典型贵州煤焦与水蒸气反应的反应级数为0.912 9~1.620 9,活化能为149.34~165.12 k J/mol。
文摘通过X射线衍射图谱分析结合灰熔融性测定,研究了准东煤燃烧过程中的矿物质赋存形态变化及添加NH4H2PO4对准东煤灰分特征和灰熔融特性的影响。试验结果表明,空气气氛下,随着准东煤燃烧温度从800℃升高至1100℃,灰中钠长石、钙铁辉石和蓝方石等熔点较低且熔融性较强矿物质含量升高,灰中主要矿物质皆为助熔性矿物质。煤中添加比例PO4^(3-)/Na≥0.5、温度800℃以上,混煤灰中生成新的Ca(2.71)Mg(0.29)(PO4)2、 Al PO4、 Ca3(PO4)2、Ca9Fe(PO4)7、Ca9Al(PO4)7、Ca2P2O7和Mg2P2O7等高熔点物质。当PO4^(3-)/Na〉 1时,混煤灰熔融性温度明显升高,软化温度由1144℃增加至1418℃(PO4^(3-)/Na=4),煤改善为中等结渣倾向。可见添加NH4H2PO4能够有效抑制低熔点、助熔性含钠矿物生成,促进高熔点物质形成,提高灰熔融特性温度。