期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于DCNN-SVM的农田灌溉分流机械智能控制方法
1
作者 张亮 冯乃勤 孙滨 《节水灌溉》 北大核心 2025年第7期53-58,65,共7页
当前农田灌溉分流以简单的单一阈值干旱判断配合机械开关人工或者定时控制为主,无法按照土壤干旱特征分类后再进行灌溉控制。为此,提出基于DCNN-SVM的农田灌溉分流机械智能控制方法。采用水分传感器实时采集农田灌溉区域的土壤水分数据... 当前农田灌溉分流以简单的单一阈值干旱判断配合机械开关人工或者定时控制为主,无法按照土壤干旱特征分类后再进行灌溉控制。为此,提出基于DCNN-SVM的农田灌溉分流机械智能控制方法。采用水分传感器实时采集农田灌溉区域的土壤水分数据,构建DCNN-SVM模型,利用DCNN提取土壤水分数据特征并输入到SVM中对土壤水分状态分类。根据SVM分类器的输出结果,确定相应的灌溉控制策略。将控制策略转化为具体的控制信号,输入到分流机械阀门控制器中,自动调节阀门开度,实现灌溉水量的精准控制。实验表明:该方法能够准确地采集并分析农田灌溉区域的土壤水分数据,成功识别出土壤水分的不同类别,可精准控制农田灌溉分流机械阀门的开度,误差不超过5%,分流控制后的灌溉量为52~70 L,灌溉量更低,可以达到节水的效果。 展开更多
关键词 深度卷积神经网络 支持向量机 灌溉分流机械 阀门开度 智能控制 控制器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部