针对利用平面特征计算RGB-D相机位姿时的求解退化问题,提出平面和直线融合的RGB-D视觉里程计(Plane-line-based RGB-D visual odometry,PLVO).首先,提出基于平面-直线混合关联图(Plane-line hybrid association graph,PLHAG)的多特征关...针对利用平面特征计算RGB-D相机位姿时的求解退化问题,提出平面和直线融合的RGB-D视觉里程计(Plane-line-based RGB-D visual odometry,PLVO).首先,提出基于平面-直线混合关联图(Plane-line hybrid association graph,PLHAG)的多特征关联方法,充分考虑平面和平面、平面和直线之间的几何关系,对平面和直线两类几何特征进行一体化关联.然后,提出基于平面和直线主辅相济、自适应融合的RGB-D相机位姿估计方法.具体来说,鉴于平面特征通常比直线特征具有更好的准确性和稳定性,通过自适应加权的方法,确保平面特征在位姿计算中的主导作用,而对平面特征无法约束的位姿自由度(Degree of freedom,DoF),使用直线特征进行补充,得到相机的6自由度位姿估计结果,从而实现两类特征的融合,解决了单纯使用平面特征求解位姿时的退化问题.最后,通过公开数据集上的定量实验以及真实室内环境下的机器人实验,验证了所提出方法的有效性.展开更多
为提高视觉-惯性导航系统在弱纹理环境下的鲁棒性和精度,结合特征点法精度高和光流法速度快的特点以及惯性信息,提出一种多尺度均匀化光流融合特征点法的视觉-惯性同时定位与地图(simultaneous localization and mapping, SLAM)构建方...为提高视觉-惯性导航系统在弱纹理环境下的鲁棒性和精度,结合特征点法精度高和光流法速度快的特点以及惯性信息,提出一种多尺度均匀化光流融合特征点法的视觉-惯性同时定位与地图(simultaneous localization and mapping, SLAM)构建方法。首先,改进快速特征点提取和描述(oriented fast and rotated brief, ORB)特征提取过程,采用多尺度网格化的方法提取ORB特征点并利用四叉树均匀分配特征点,提高特征分布离散性。其次,在帧间采用LK(Lucas and Kanade)光流法追踪特征点进行帧间的数据关联,在关键帧对特征点进行描述子的计算和匹配从而实现关键帧间的数据关联,保证算法速度的同时提高定位精度和鲁棒性。最后,基于光流法建立的数据关联得到的初始位姿为后端优化提供初始值,整合ORB特征点重投影误差、惯性测量单元(inertial measurement unit, IMU)预积分误差以及滑动窗口先验误差构建最小化目标函数采用滑动窗口非线性优化进行求解。实验表明,所提方法相比单目视觉惯性系统具有更高的定位精度和鲁棒性,定位精度平均提升16.7%。展开更多
文摘针对利用平面特征计算RGB-D相机位姿时的求解退化问题,提出平面和直线融合的RGB-D视觉里程计(Plane-line-based RGB-D visual odometry,PLVO).首先,提出基于平面-直线混合关联图(Plane-line hybrid association graph,PLHAG)的多特征关联方法,充分考虑平面和平面、平面和直线之间的几何关系,对平面和直线两类几何特征进行一体化关联.然后,提出基于平面和直线主辅相济、自适应融合的RGB-D相机位姿估计方法.具体来说,鉴于平面特征通常比直线特征具有更好的准确性和稳定性,通过自适应加权的方法,确保平面特征在位姿计算中的主导作用,而对平面特征无法约束的位姿自由度(Degree of freedom,DoF),使用直线特征进行补充,得到相机的6自由度位姿估计结果,从而实现两类特征的融合,解决了单纯使用平面特征求解位姿时的退化问题.最后,通过公开数据集上的定量实验以及真实室内环境下的机器人实验,验证了所提出方法的有效性.
文摘为提高视觉-惯性导航系统在弱纹理环境下的鲁棒性和精度,结合特征点法精度高和光流法速度快的特点以及惯性信息,提出一种多尺度均匀化光流融合特征点法的视觉-惯性同时定位与地图(simultaneous localization and mapping, SLAM)构建方法。首先,改进快速特征点提取和描述(oriented fast and rotated brief, ORB)特征提取过程,采用多尺度网格化的方法提取ORB特征点并利用四叉树均匀分配特征点,提高特征分布离散性。其次,在帧间采用LK(Lucas and Kanade)光流法追踪特征点进行帧间的数据关联,在关键帧对特征点进行描述子的计算和匹配从而实现关键帧间的数据关联,保证算法速度的同时提高定位精度和鲁棒性。最后,基于光流法建立的数据关联得到的初始位姿为后端优化提供初始值,整合ORB特征点重投影误差、惯性测量单元(inertial measurement unit, IMU)预积分误差以及滑动窗口先验误差构建最小化目标函数采用滑动窗口非线性优化进行求解。实验表明,所提方法相比单目视觉惯性系统具有更高的定位精度和鲁棒性,定位精度平均提升16.7%。