The laser-induced damage threshold(LIDT) of optical coating is a limited factor for development of a high peak power laser. The automatic damage testing facility was built to determine the LIDT of optics at 1 064 nm a...The laser-induced damage threshold(LIDT) of optical coating is a limited factor for development of a high peak power laser. The automatic damage testing facility was built to determine the LIDT of optics at 1 064 nm and 355 nm.. The cleanning and processing procedure of the substrate and coating technique were improved, and the damage resistance of high-reflective coating at 1 064 nm was increased.展开更多
High laser-induced damage threshold and large aperture were focuses on the studies of high power laser coatings. This paper reports the research activities at our center. Several measures were developed for evaluating...High laser-induced damage threshold and large aperture were focuses on the studies of high power laser coatings. This paper reports the research activities at our center. Several measures were developed for evaluating characters of laser damage, including determination of laser induced damage threshold and detection of absorption based on surface thermal lensing technique. Defect was deemed to be the initial source of laser damage, and was the main factor restricting the laser damage resistance of optical coatings. The contribution of several kinds of typical defects to laser damage was analyzed, and some deposition measures were adopted to control and eliminate the origin of defect. Furthermore, some post-treatment methods were also employed to alleviate the influence of the defect and to improve the laser damage resistance. Correction mask was introduced to improve the thickness uniformity, and the thickness uniformity can be amended to less than 1% in the range of Φ650 mm. Preliminary investigation related to surface deformation was also conducted.展开更多
文摘The laser-induced damage threshold(LIDT) of optical coating is a limited factor for development of a high peak power laser. The automatic damage testing facility was built to determine the LIDT of optics at 1 064 nm and 355 nm.. The cleanning and processing procedure of the substrate and coating technique were improved, and the damage resistance of high-reflective coating at 1 064 nm was increased.
文摘High laser-induced damage threshold and large aperture were focuses on the studies of high power laser coatings. This paper reports the research activities at our center. Several measures were developed for evaluating characters of laser damage, including determination of laser induced damage threshold and detection of absorption based on surface thermal lensing technique. Defect was deemed to be the initial source of laser damage, and was the main factor restricting the laser damage resistance of optical coatings. The contribution of several kinds of typical defects to laser damage was analyzed, and some deposition measures were adopted to control and eliminate the origin of defect. Furthermore, some post-treatment methods were also employed to alleviate the influence of the defect and to improve the laser damage resistance. Correction mask was introduced to improve the thickness uniformity, and the thickness uniformity can be amended to less than 1% in the range of Φ650 mm. Preliminary investigation related to surface deformation was also conducted.