期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
社区高血压患者收缩压波动轨迹及其影响因素的研究 被引量:1
1
作者 聂朦 邬娜 +10 位作者 焦惠艳 袁志权 李成英 吴龙 许月瑶 杨蕾 王煜 伍永红 钟理 李亚斐 杨敬源 《陆军军医大学学报》 CAS CSCD 北大核心 2024年第12期1457-1466,F0003,共11页
目的分析和构建社区高血压人群收缩压(systolic blood pressure,SBP)变化的轨迹模型,并分析不同SBP轨迹的影响因素。方法本研究基于社区回顾性队列,运用潜类别轨迹模型(latent class trajectory modelling,LCTM)分析社区高血压人群SBP... 目的分析和构建社区高血压人群收缩压(systolic blood pressure,SBP)变化的轨迹模型,并分析不同SBP轨迹的影响因素。方法本研究基于社区回顾性队列,运用潜类别轨迹模型(latent class trajectory modelling,LCTM)分析社区高血压人群SBP的变化模式,识别、构建SBP的纵向变化轨迹;运用无序多分类logistic回归分析不同SBP轨迹的影响因素,根据先验知识使用“有向无环图”识别和调整不同的混杂因素。结果共793名高血压患者被纳入分析,LCTM拟合的社区高血压患者SBP轨迹最优分组为3组,分别为低水平平稳组(n=561,70.74%)、下降组(n=170,21.44%)和上升组(n=62,7.82%);年龄、锻炼频率、随访方式、摄盐情况、遵医行为、有无转诊在不同SBP轨迹亚组中分布存在统计学差异(P<0.05);无序多分类logistic回归分析结果显示,以低水平平稳组为对照,“男性”、“门诊随访”的患者被分类到下降组的可能性较高,OR及95%CI分别为1.436(1.016~2.030)、1.702(1.202~2.410);而“年龄≥65岁”,“不锻炼或偶尔锻炼”,摄盐情况为“中”和“重”度的人群,被分类到上升组的可能性更高,OR及95%CI依次为1.949(1.145~3.317)、2.284(1.305~3.998)、2.433(1.272~4.654)、4.540(1.291~15.963)。结论社区高血压人群收缩压变化轨迹可分为3组,即“低水平平稳组”、“下降组”和“上升组”;性别、年龄、摄盐情况、锻炼频率、随访方式可能是收缩压轨迹的影响因素。 展开更多
关键词 社区人群 高血压 潜类别轨迹模型 收缩压轨迹 影响因素
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部