期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
联合不相关回归和潜在表示的无监督特征选择
1
作者 刘威 朱乙鑫 +2 位作者 白润才 高琪 李晓红 《辽宁工程技术大学学报(自然科学版)》 北大核心 2025年第4期495-504,共10页
针对基于图的无监督特征选择算法存在挖掘数据内在信息不充分,且易受噪声干扰难以获取更具有判别性特征的问题,提出一种基于广义不相关回归和潜在表示学习的无监督特征选择方法(uncorrelated regression and latent representation for ... 针对基于图的无监督特征选择算法存在挖掘数据内在信息不充分,且易受噪声干扰难以获取更具有判别性特征的问题,提出一种基于广义不相关回归和潜在表示学习的无监督特征选择方法(uncorrelated regression and latent representation for unsupervised feature selection,URLUFS)。该方法将非负矩阵分解作用于广义不相关回归模型的投影矩阵,使投影矩阵实现非线性的维数约简并获得特征选择矩阵。在特征选择矩阵的基础上,引入自适应图学习来进一步挖掘数据的局部流形结构,并对特征选择矩阵施加范数约束以保持稀疏性。利用潜在表示对数据样本间的相互关系进行学习,引导回归模型中的伪标签矩阵,从而选择出更具有判别性的特征。在8个公开的数据集上进行了数值对比实验,实验结果表明:基于广义不相关回归和潜在表示学习的无监督特征选择算法明显优于其他8种无监督特征选择算法。 展开更多
关键词 无监督特征选择 广义不相关回归 非负矩阵分解 潜在表示学习 自适应图学习
在线阅读 下载PDF
潜在多步马尔可夫概率的鲁棒无监督特征选择
2
作者 过伶俐 陈秀宏 《智能系统学报》 CSCD 北大核心 2023年第5期1017-1029,共13页
无监督特征选择是机器学习和数据挖掘中的一种重要的降维技术。然而当前的无监督特征选择方法侧重于从数据的邻接矩阵中学习数据的流形结构,忽视非邻接数据对之间的关联。其次这些方法都假设数据实例具有独立同一性,但现实中的数据样本... 无监督特征选择是机器学习和数据挖掘中的一种重要的降维技术。然而当前的无监督特征选择方法侧重于从数据的邻接矩阵中学习数据的流形结构,忽视非邻接数据对之间的关联。其次这些方法都假设数据实例具有独立同一性,但现实中的数据样本其来源是不同的,这样的假设就不成立。此外,在原始数据空间中特征重要性的衡量会受到数据和特征中的噪声影响。基于以上问题,本文提出了潜在多步马尔可夫概率的鲁棒无监督特征选择方法(unsupervised feature selection via multi-step Markov probability and latent representation,MMLRL),其思想是通过最大多步马尔可夫转移概率学习数据流形结构,然后通过对称非负矩阵分解模型学习数据的潜在表示,最后在数据的潜在表示空间中选择特征。同时在6个不同类型的数据集上验证了所提出算法的有效性。 展开更多
关键词 特征选择 潜在表示学习 多步马尔可夫转移概率 无监督 非负矩阵分解 稀疏回归 L_(2 1)范数 降维
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部