期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
“演学”活动:英语学习活动观的创新实践 被引量:1
1
作者 胡晓旋 《中小学英语教学与研究》 北大核心 2023年第6期23-28,共6页
开展“演学”活动旨在优化教与学的方式,激发学生学习英语的热情,增强学生的学习体验。本文结合具体案例,从“基于语篇,学思结合,开展‘剧本’学习”“深入语篇,学用结合,增强‘演员’体验”“超越语篇,学创结合,启发‘演学’创作”三... 开展“演学”活动旨在优化教与学的方式,激发学生学习英语的热情,增强学生的学习体验。本文结合具体案例,从“基于语篇,学思结合,开展‘剧本’学习”“深入语篇,学用结合,增强‘演员’体验”“超越语篇,学创结合,启发‘演学’创作”三个方面探究了在小学英语教学中开展“演学”活动的实施策略。研究表明:这些策略的运用能够有效地增强学生深度学习的体验,促进教学目标的达成,实现培养学生核心素养的目标。 展开更多
关键词 英语 英语习活动观 演学”活动
在线阅读 下载PDF
西方自然科学与维新思潮——论康有为、严复、谭嗣同的变革思想
2
作者 朱义禄 《学习与探索》 CSSCI 北大核心 1999年第2期63-68,共6页
在近代,科学对人们思想变化起着非常重要的作用。以康有为、严复、谭嗣同等为代表的维新派,具有强烈的变革意识,这与他们长期接受西方自然科学有关。科学精神、理性之光,在康有为的著作有明显的体现。严复在介绍达尔文学说时认为,... 在近代,科学对人们思想变化起着非常重要的作用。以康有为、严复、谭嗣同等为代表的维新派,具有强烈的变革意识,这与他们长期接受西方自然科学有关。科学精神、理性之光,在康有为的著作有明显的体现。严复在介绍达尔文学说时认为,进化论与自由平等学说相结合,形成了弃旧谋新的世界性潮流。谭嗣同依据西学,以“破中外之见”来冲击传统政治文化中的夷夏之辨。他们从“政治之变”是“基于科学”的视野,系统地介绍了进化论与资产阶级的民主思想,为国人提供了一个崭新的世界观与方法论。作者认为,研究维新派变革中国现实的思想时。 展开更多
关键词 康有为 谭嗣同 西方自然科 维新思潮 严复 进化论 “以太” 近代中国 理性之光
在线阅读 下载PDF
High-temperature stability and mechanical property optimization of laser powder bed fusion 316L steel after controlled annealing
3
作者 LI Wen-qi MENG Li-xin +3 位作者 ZHANG Qian-fen LU Hui-hu NIU Xiao-feng HOU Hua 《Journal of Central South University》 2025年第4期1179-1193,共15页
The research demonstrated that laser powder bed fusion(LPBF)coupled with controlled annealing at 1200°C,could significantly increase the proportion of coincidence site lattice(CSL)grain boundary,thereby achieving... The research demonstrated that laser powder bed fusion(LPBF)coupled with controlled annealing at 1200°C,could significantly increase the proportion of coincidence site lattice(CSL)grain boundary,thereby achieving an outstanding synergy of enhanced strength and exceptional ductility.The plastic deformation behavior,strain hardening behavior,and fracture behavior of LPBF 316L steel annealing at 1200℃for 20 h were studied through quasi-in-situ tensile process.It was found that LPBF 316L steel formed a certain proportion of deformation twins during the tensile process,and the formation of twins changed the crystal orientation,thus promoting further slip and crystal deformation.The synergistic effect of slip and twin promoted higher plasticity.LPBF process coupled with controlled annealing at 1200°C for 20 h leads to a ultimate tensile strength of 613 MPa and total elongation of 73.8%. 展开更多
关键词 laser powder bed fusion heat treatment microstructural evolution mechanical behavior plastic deformation behavior
在线阅读 下载PDF
Mechanical properties and permeability evolution of sandstone subjected to the coupling effects of chemical-seepage-stress
4
作者 WANG Wei CHEN Chao-wei +3 位作者 CAO Ya-jun JIA Yun LIU Shi-fan SHEN Wan-qing 《Journal of Central South University》 2025年第2期552-565,共14页
In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepa... In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepage of different chemical solutions.It is observed that with the increase of confining pressure,the peak stress,dilatancy stress,dilatancy stress ratio,peak strain,and elastic modulus of the sandstone increase while the Poisson ratio decreases and less secondary cracks are produced when the samples are broken.The pore pressure and confining pressure have opposite influences on the mechanical properties.With the increase of the applied axial stress,three stages are clearly identified in the permeability evolution curves:initial compaction stage,linear elasticity stage and plastic deformation stage.The permeability reaches the maximum value when the highest volumetric dilatancy is obtained.In addition,the hydrochemical action of salt solution with pH=7 and 4 has an obvious deteriorating effect on the mechanical properties and induces the increase of permeability.The obtained results will be useful in engineering to understand the mechanical and seepage properties of sandstone under the coupled chemical-seepage-stress multiple fields. 展开更多
关键词 red sandstone chemical corrosion multi-field coupling mechanical characteristics permeability evolution
在线阅读 下载PDF
Shear mechanical properties and debonding failure mechanisms of bolt-resin-rock anchoring system with anisotropic interfaces
5
作者 NIE Xin-xin YIN Qian +7 位作者 TAO Zhi-gang GUO Long-ji RIABOKON Evgenii ZHU De-fu XIE Liang-fu ZHA Wen-hua WANG Lin-feng REN Ya-jun 《Journal of Central South University》 2025年第7期2535-2552,共18页
This study investigates the shear mechanical responses and debonding failure mechanisms of anchoring systems comprising three anisotropic media and two anisotropic interfaces under controlled boundary conditions of co... This study investigates the shear mechanical responses and debonding failure mechanisms of anchoring systems comprising three anisotropic media and two anisotropic interfaces under controlled boundary conditions of constant normal load(F_(s)),constant normal stiffness(K),and shear rate(v).A systematic analysis of shear mechanical properties,the evolution of maximum principal strain field,and damage characteristics along shear failure surface is presented.Results from direct shear tests demonstrate that initial shear slip diminishes with increasing F_(s)and K,attributed to the normal constraint strengthening effect,while an increase in v enhances initial shear slip due to attenuated deformation coordination and stress transfer.As F_(s)increases from 7.5 to 120 kN,K from 0 to 12 MPa/mm,and v from 0.1 to 2 mm/min,the peak shear load increases by 210.32%and 80.16%with rising F_(s)and K,respectively,while decreases by 38.57%with increasing v.Correspondingly,the shear modulus exhibits,respectively,a 135.29%and 177.06%increase with rising F_(s)and K,and a 37.03%decrease with larger v.Initial shear dilation is identified as marking the formation of shear failure surface along anisotropic interfaces,resulting from the combined shear actions at the resin bolt interface,where resin undergoes shear by bolt surface protrusions,and the resin-rock interface,where mutual shear occurs between resin and rock.With increasing F_(s)and K and decreasing v,the location of the shear failure surface shifts from the resin-rock interface to the resin-bolt interface,accompanied by a transition in failure mode from tensile rupture of resin to shear off at the resin surface. 展开更多
关键词 anchoring system anisotropic interfaces shear mechanical properties strain field evolution debonding failure
在线阅读 下载PDF
Effect of magnesium slag and blast furnace slag as partial cement substitutes on properties of cemented tailings backfill
6
作者 YANG Jian YANG Xiao-bing +3 位作者 YAN Ze-peng YIN Sheng-hua ZHANG Xi-zhi QI Yao-bin 《Journal of Central South University》 2025年第7期2696-2716,共21页
Utilizing mine solid waste as a partial cement substitute(CS)to develop new cementitious materials is a significant technological innovation that will decrease the expenses associated with filling mining.To realize th... Utilizing mine solid waste as a partial cement substitute(CS)to develop new cementitious materials is a significant technological innovation that will decrease the expenses associated with filling mining.To realize the resource utilization of magnesium slag(MS)and blast furnace slag(BFS),the effects of different contents of MS and BFS as partial CSs on the deformation and energy characteristics of cemented tailings backfill on different curing ages(3,7,and 28 d)were discussed.Meanwhile,the destabilization failure energy criterion of the backfill was established from the direction of energy change.The results show that the strength of all backfills increased with increasing curing age,and the strengths of the backfills exceeded 1.342 MPa on day 28.The backfill with 50%BFS+50%cement has the best performance in mechanical properties(the maximum strength can reach 6.129 MPa)and is the best choice among these CS combinations.The trend in peak strain and elastic modulus of the backfill with increasing curing age may vary depending on the CS combination.The energy index at peak stress of the backfill with BFS as a partial CS was significantly higher than that of the backfill under other CS combinations.In contrast,the enhancement of the energy index when MS was used as a partial CS was not as significant as BFS.Sharp changes in the energy consumption ratio after continuous smooth changes can be used as a criterion for destabilization and failure of the backfill.The research results can provide guidance for the application of MS and BFS as partial CSs in mine filling. 展开更多
关键词 cemented tailings backfill cement substitute curing age mechanical properties energy evolution energy consumption ratio
在线阅读 下载PDF
Microstructural evolution and mechanical properties of AZ31 Mg alloy fabricated by a novel bifurcation-equal channel angular pressing
7
作者 HAN Ting-zhuang ZHANG Hua +6 位作者 YANG Mu-xuan WANG Li-fei LU Li-wei ZHANG De-chuang CAO Xia XU Ji BAI Jian-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期2961-2972,共12页
In this work,a novel type of short-process deformation technology of Mg alloys,bifurcation-equal channel angular pressing(B-ECAP),was proposed to refine grain and improve the basal texture.The cylindrical billets were... In this work,a novel type of short-process deformation technology of Mg alloys,bifurcation-equal channel angular pressing(B-ECAP),was proposed to refine grain and improve the basal texture.The cylindrical billets were first compressed into the die cavity,then sequentially flowed downward through a 90°corner and two 120°shear steps.The total strain of B-ECAP process could reach 3.924 in a single pass.The results of microstructure observation showed that DRX occurred at upsetting process in the die cavity and completed at position D.The grains were refined to 6.3μm at being extruded at 300℃ and grew obviously with the extrusion temperature increase.The shear tress induced by 900 corner and two 120°shear steps resulted in the basal poles of most grains tilted to extrusion direction(ED)by±25°.Compared with the original billets,the extruded sheets exhibited higher yield strengths(YS),which was mainly attributed to the grain refinement.The higher Schmid factor caused by ED-tilt texture resulted in a fracture elongation(FE)more than that of the original bar in ED,while was equivalent to that in transverse direction(TD).As the extrusion temperature increased,the variation of UTS and YS in ED and TD decreased gradually without ductility obviously decrease. 展开更多
关键词 AZ31 Mg alloy B-ECAP microstructure texture evolution mechanical properties
在线阅读 下载PDF
Effect of Ti addition on microstructure and mechanical properties of Zn-22Al alloy after ECAP
8
作者 AZAD Bahram EIVANI Ali Reza SALEHI Mohammad Taghi 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3703-3714,共12页
The effect of Ti addition on microstructure and mechanical properties of Zn-22Al eutectoid alloy with 0.15 wt%Ti was investigated.It was observed that the presence of Ti changes the morphology of n phase in the alloy.... The effect of Ti addition on microstructure and mechanical properties of Zn-22Al eutectoid alloy with 0.15 wt%Ti was investigated.It was observed that the presence of Ti changes the morphology of n phase in the alloy.Addition of Ti to Zn-Al alloy caused the formation of Ti(Zn,Al)_(3);phase.Before applying equal channel angular pressing(ECAP),two times of homogenization treatment were conducted on the alloy.After secondary homogenization,the microstructure consisted of a homogeneous and fine mixture ofαand n phases and the as-cast lamellar structure removed.After homogenization,ECAP was carried out on Ti-containing Zn-22Al alloy.The fraction of high angle grain boundaries increased with increasing the number of ECAP passes.The average grain size reduced from 930 nm after secondary homogenization to 380 nm after 8 passes of ECAP.The texture of the alloy also changed by applying ECAP.Maximum elongation to failure of the homogenized alloy was 135%at a strain rate of 10^(-5)s^(-1)which enhanced to a maximum of 405%at a strain rate of 10^(-3)s^(-1)after 8 passes of ECAP.It was also observed that by conducting ECAP and increasing the number of passes the hardness decreases,which indicates work-softening behavior due to dynamic recovery/recrystallization. 展开更多
关键词 Zn-Al eutectoid alloy Zn-Al-Ti alloy ECAP process microstructure evolution mechanical properties
在线阅读 下载PDF
Time-dependent effects in transient liquid phase bonding of 304L and Cp-Ti using an Ag-Cu interlayer
9
作者 Saeed VAZIRIAN Mohammad MOSHKBAR BAKHSHAYESH Ali FARZADI 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2237-2255,共19页
One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm ... One of the challenges for bimetal manufacturing is the joining process.Hence,transient liquid phase(TLP)bonding was performed between 304L stainless steel and Cp-Ti using an Ag-Cu interlayer with a thickness of 75μm for bonding time of 20,40,60,and 90 min.The bonding temperature of 860℃ was considered,which is under the β transus temperature of Cp-Ti.During TLP bonding,various intermetallic compounds(IMCs),including Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe),Ti_(2)(Cu,Ag),and Ti_(2)Cu from 304L toward Cp-Ti formed in the joint.Also,on the one side,with the increase in time,further diffusion of elements decreases the blocky IMCs such as Ti_(5)Cr_(7)Fe_(17),(Cr,Fe)_(2)Ti,Ti(Cu,Fe)in the 304L diffusion-affected zone(DAZ)and reaction zone,and on the other side,Ti_(2)(Cu,Ag)IMC transformed into fine morphology toward Cp-Ti DAZ.The microhardness test also demonstrated that the(Cr,Fe)_(2)Ti+Ti_(5)Cr_(7)Fe_(17) IMCs in the DAZ on the side of 304L have a hardness value of HV 564,making it the hardest phase.The maximum and minimum shear strength values are equal to 78.84 and 29.0 MPa,respectively.The cleavage pattern dominated fracture surfaces due to the formation of brittle phases in dissimilar joints. 展开更多
关键词 diffusion brazing transient liquid phase bonding dissimilar material joints microstructural evolution mechanical properties grade 2 titanium
在线阅读 下载PDF
Effect of quenching cooling rate on residual stress and microstructure evolution of 6061 aluminum alloy
10
作者 HUANG Ke YI You-ping +4 位作者 HUANG Shi-quan HE Hai-lin LIU Jie HUA Hong-en TANG Yun-jian 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2167-2180,共14页
In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using ... In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods,respectively.Then,the processability of the quenched samples was evaluated at cryogenic temperatures.The mechanical properties of the as-aged samples were assessed,and microstructure evolution was analyzed.The surface residual stresses of samples W30℃,W60℃and W100℃is−178.7,−161.7 and−117.2 MPa,respectively along x-direction,respectively;and−191.2,−172.1 and−126.2 MPa,respectively along y-direction.The sample quenched in boiling water displaying the lowest residual stress(~34%and~60%reduction in the surface and core).The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient.Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures.The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30℃to 100℃.Fine and homogeneous β"phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones(GP zones)premature precipitated during quenching process. 展开更多
关键词 6061 aluminum alloy residual stress cooling rate cryogenic cooling mechanical properties microstructure evolution
在线阅读 下载PDF
Enhancing reliability assessment of curved low-stiffness track-viaducts with an adaptive surrogate-based approach emphasizing track dynamic geometric state
11
作者 CHENG Fang LIU Hui YANG Rui 《Journal of Central South University》 CSCD 2024年第11期4262-4275,共14页
Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a si... Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a simulation-based TDGS model is established,and a surrogate-based model,grid search algorithm-particle swarm optimization-genetic algorithm-multi-output least squares support vector regression,is established.Among them,hyperparameter optimization algorithm’s effectiveness is confirmed through test functions.Subsequently,an adaptive surrogate-based probability density evolution method(PDEM)considering random track geometry irregularity(TGI)is developed.Finally,taking curved train-steel spring floating slab track-U beam as case study,the surrogate-based model trained on simulation datasets not only shows accuracy in both time and frequency domains,but also surpasses existing models.Additionally,the adaptive surrogate-based PDEM shows high accuracy and efficiency,outperforming Monte Carlo simulation and simulation-based PDEM.The reliability assessment shows that the TDGS part peak management indexes,left/right vertical dynamic irregularity,right alignment dynamic irregularity,and track twist,have reliability values of 0.9648,0.9918,0.9978,and 0.9901,respectively.The TDGS mean management index,i.e.,track quality index,has reliability value of 0.9950.These findings show that the proposed framework can accurately and efficiently assess the reliability of curved low-stiffness track-viaducts,providing a theoretical basis for the TGI maintenance. 展开更多
关键词 reliability assessment track dynamic geometric state hybrid machine learning algorithm adaptive learning strategy probability density evolution method
在线阅读 下载PDF
Nonlinear inversion for magnetotelluric sounding based on deep belief network 被引量:10
12
作者 WANG He LIU Wei XI Zhen-zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2482-2494,共13页
To improve magnetotelluric(MT)nonlinear inversion accuracy and stability,this work introduces the deep belief network(DBN)algorithm.Firstly,a network frame is set up for training in different 2D MT models.The network ... To improve magnetotelluric(MT)nonlinear inversion accuracy and stability,this work introduces the deep belief network(DBN)algorithm.Firstly,a network frame is set up for training in different 2D MT models.The network inputs are the apparent resistivities of known models,and the outputs are the model parameters.The optimal network structure is achieved by determining the numbers of hidden layers and network nodes.Secondly,the learning process of the DBN is implemented to obtain the optimal solution of network connection weights for known geoelectric models.Finally,the trained DBN is verified through inversion tests,in which the network inputs are the apparent resistivities of unknown models,and the outputs are the corresponding model parameters.The experiment results show that the DBN can make full use of the global searching capability of the restricted Boltzmann machine(RBM)unsupervised learning and the local optimization of the back propagation(BP)neural network supervised learning.Comparing to the traditional neural network inversion,the calculation accuracy and stability of the DBN for MT data inversion are improved significantly.And the tests on synthetic data reveal that this method can be applied to MT data inversion and achieve good results compared with the least-square regularization inversion. 展开更多
关键词 MAGNETOTELLURICS nonlinear inversion deep learning deep belief network
在线阅读 下载PDF
Mechanical properties of deep sandstones under loading rate effect 被引量:6
13
作者 ZHANG Jun-wen DING Lu-jiang +2 位作者 SONG Zhi-xiang FANWen-bing WANG Shan-yong 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期1933-1944,共12页
The advance speed of the working face in coal mines can significantly affect the fluctuation frequency of abutment pressure in front of the coal body.Moreover,it has a certain correlation with the change of axial load... The advance speed of the working face in coal mines can significantly affect the fluctuation frequency of abutment pressure in front of the coal body.Moreover,it has a certain correlation with the change of axial loading rate in coal and rock mechanics test.Therefore,uniaxial compression tests under various loading rates of 0.05,0.1,0.15,0.25,0.5 MPa/s were conducted using 2000 kN triaxial testing machine and PCI-2 acoustic emission test system to study the loading rate effect on the mechanical properties of deep sandstones.The results show that 1)the peak strength and elastic modulus of the deep sandstone increase with the loading rate increasing;2)with the loading rate increasing,the deep sandstone transforms from plastic-elastic-plastic to plastic-elastic and moreover,the failure mode gradually transfers from type I to type III;3)With the loading rate increasing,the total input strain energy,elastic strain energy,and dissipated strain energy generally increase;4)the damage variable presents the evolution characteristics of inverted“S”shape with time,and with the loading rate increasing,the damage degree of the deep sandstone is aggravated.The conclusion obtained can provide the theoretical basis for the stability control of the surrounding rock in deep engineering. 展开更多
关键词 loading rate effect failure mode energy evolution damage evolution mechanical properties deep sandstone
在线阅读 下载PDF
Experimental investigation on deformation characteristics and permeability evolution of rock under confining pressure unloading conditions 被引量:13
14
作者 CHEN Xu TANG Chun-an +2 位作者 YU Jin ZHOU Jian-feng CAI Yan-yan 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第8期1987-2001,共15页
Deformation behavior and hydraulic properties of rock are the two main factors that influence safety of excavation and use of rock engineering due to in situ stress release.The primary objective of this study is to ex... Deformation behavior and hydraulic properties of rock are the two main factors that influence safety of excavation and use of rock engineering due to in situ stress release.The primary objective of this study is to explore deformation characteristics and permeability properties and provide some parameters to character the rock under unloading conditions.A series of triaxial tests with permeability and acoustic emission signal measurement were conducted under the path of confining pressure unloading prior to the peak stress.Deformation behavior and permeability evolution in the whole stress–strain process based on these experimental results were analyzed in detail.Results demonstrate that,under the confining pressure unloading conditions,a good correspondence relationship among the stress–axial strain curve,permeability–axial strain curve and acoustic emission activity pattern was obtained.After the confining pressure was unloaded,the radial strain grew much faster than the axial strain,which induced the volumetric strain growing rapidly.All failures under confining pressure unloading conditions featured brittle shear failure with a single macro shear rupture surface.With the decrease in deformation modulus during the confining pressure unloading process,the damage variable gradually increases,indicating that confining pressure unloading was a process of damage accumulation and strength degradation.From the entire loading and unloading process,there was a certain positive correlation between the permeability and volumetric strain. 展开更多
关键词 unloading rock mechanics permeability evolution triaxial experiment acoustic emission SANDSTONE
在线阅读 下载PDF
Stress-level dependency of creep ageing behavior for friction stir welded Al-Cu alloy 被引量:5
15
作者 WANG Dong-yao ZHAN Li-hua +3 位作者 ZHONG Jue TANG Zhi-mao ZENG Quan-qing GAN Ke-fu 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期3030-3053,共24页
Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by f... Creep ageing forming(CAF)has been widely used in the aerospace engineering,but how to optimize the processing conditions,especially under complex stress state of the CAF process for large-size components produced by friction-stir welding is still a great challenge to now.In this work,the creep ageing behaviors and underlying microstructure evolution of a thick friction-stir welded Al-Cu alloy plate after CAF process under different stress levels are systematically investigated.The creep strain and the strength of the joint are both significantly increased when the stress is close to the average yield strength of the initial weld joint.The grain size reduces while the local strain and dislocation density increase from top to bottom of the NZ;hence,the bottom layer of the weld joint exhibits higher creep strain and steady-stage creep strain rate during the CAF process.The results reveal that the gradient microstructures sensitive to the stress level effectively govern the creep-ageing performance from the upper to the bottom layer in a thick friction stir welded Al-Cu alloy plate.Rationally increasing the initial dislocation density of the weld joint can both enhance the tensile properties and promote the creep deformation of the weld joint for CAF process. 展开更多
关键词 creep age forming friction stir welding inhomogeneous gradient microstructure thick Al-Cu alloy plate precipitation microstructure evolution mechanical property
在线阅读 下载PDF
Magnesite and talc origin in the sequence of geodynamic events in Veporicum, Inner Western Carpathians, Slovakia 被引量:2
16
作者 Zoltán NMETH Walter PROCHASKA +4 位作者 Martin RADVANEC Martin KOV■IK Ján MADARAS Peter KOD■RA L'ubomír HRA■KO 《岩石学报》 SCIE EI CAS CSCD 北大核心 2004年第4期837-854,共18页
This paper summarizes recent data about magnesite and talc genesis in Carboniferous host rocks of Western Carpathians (Slovakia) , which occur in two distinct belts in tectonic superunit Veporicum and its contact zone... This paper summarizes recent data about magnesite and talc genesis in Carboniferous host rocks of Western Carpathians (Slovakia) , which occur in two distinct belts in tectonic superunit Veporicum and its contact zone with Gemericum. The northern Sinec magnesite and talc belt (with main deposits Kokava, Sinec, Samo, Hnust'a-Mutnik) contains economic accummulation of magnesite and talc, while in the southern Ochtina belt ( main deposits in Dubrava massif-Dubrava, Mikova, Jedl'ovec; Lubenik, Ochtina, Kosice-Bankov, Banisko, Medvedia) the magnesite is dominating.The magnesite genesis by successive replacement of Carboniferous calcite to dolomite and magnesite during metamorphic process Ml (northern belt 280-400℃; , southern belt 370-420℃: ; Radvanec & Prochaska, 2001; Kodera & Radvanec, 2002) , being supplied by Mg from Permoscythian evaporitic bittern brines, relates to Variscan post-collisional (post-VD) evolution. The extensional tectonics and the high heat flow facilitated the generation of a hydrothermal system.The time-separated later metamorphic and sourcely different fluid flow event (M2; 1. c. ) produced talc. Tectonic, microtectonic, metamorphic and geochronological data relate the talc origin with the Alpine Upper Cretaceous (88-84 Ma; Maluski in Kovacik et al. , 1996) tectonothermal event AD2. This event, being the consequence of Alpine collisional ( AD1 ) crustal thickening and metamorphic core complex origin, meant regional extension and pervasive fluid flow of open system in crustal discontinuities. This process was prominent in the northern belt ( Sinec shear zone) located more closely to Veporic thermal dome, while towards its peripheral parts (southern Ochtina belt) the M2 metamorphic process and steatitization gradually weakened.Studies from Sinec shear zone (being the prominent AD2 -AD3 structure of northern Sinec belt) , where the dolomite/magnesite lenses (replacement in M1) and their accompanying lithology were in AD1 sandwitched between more competent basement blocks, proved in AD2 the pervasite steatitization, the talc and dolomite 2 origin in extensional microstructures ( metamorphic process M2; 490 -540℃, 240-330 MPa, 1. c. ).The economic accummulations of talc in Sinec belt are the products of antithetic shearing during the AD3 phase, being the gradual continuation of AD2 ( change of kinematics from unroofing to regional transpressional shearing). Contrary to the northern Sinec belt having located the AD3 deformation into narrow shear zone with soft lithology surrounded by hard lithology, in southern Ochtina belt the deformation AD3 was accommodated by wide soft rock column with rigid carbonate blocks floating inside. The lower P-T ( M2)conditions and deformational gradient in Ochtina belt during AD2 and AD3 phases caused why no economic talc accummulations developed there.The results of presented study can be used as general criteria for magnesite and talc prospection in Alpine type terranes. 展开更多
关键词 Magnesite and talc genesis Geodynamic evolution Shear zones MICROSTRUCTURES Fluid inclusions WesternCarpathians
在线阅读 下载PDF
Transport phenomena and keyhole evolution process in laser welding of stainless steel 被引量:2
17
作者 LIU Jiang-wei ZENG Ping-wang +1 位作者 RAO Zheng-hua ZHANG Tian-li 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2088-2099,共12页
Knowledge of transport phenomena and keyhole evolution is important for controlling laser welding process. However, it is still not well understood by far due to the complex phenomena occurring in a wide temperature r... Knowledge of transport phenomena and keyhole evolution is important for controlling laser welding process. However, it is still not well understood by far due to the complex phenomena occurring in a wide temperature range. A transient 3D model including heat transfer, fluid flow and tracking of free surface is built in this study. The transport phenomena are investigated by calculating the temperature and velocity fields. The 3D dynamic keyhole evolution process is revealed through tracking free surface using volume-of-fluid method. The results show that the keyhole deepening speed decreases with laser welding process before the quasi-steady state is reached. The plasma can greatly affect the keyhole depth through absorbing a great amount of laser energy and thus lowering the recoil pressure. Moreover, the relationship between keyhole depth and weld penetration is also discussed. This paper can help to better understand the dynamics in molten pool and then improve laser welding process. 展开更多
关键词 laser welding keyhole evolution weld pool dynamics free surface tracking weld penetration
在线阅读 下载PDF
Microstructural evolution of 2026 aluminum alloy during homogenization 被引量:8
18
作者 JIANG Ding-bang PAN Qing-lin +2 位作者 HUANG Zhi-qi HU Quan LIU Zhi-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第3期490-498,共9页
The microstructural evolution of 2026 aluminum alloy during homogenization treatment was investigated by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive X-ray spectrometry(EDS),differential ... The microstructural evolution of 2026 aluminum alloy during homogenization treatment was investigated by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive X-ray spectrometry(EDS),differential scanning calorimetry(DSC)and X-ray diffraction(XRD).The results show that severe dendritic segregation exists in the as-cast 2026 alloy and the main secondary phases at grain boundary are S(Al2CuMg)andθ(Al2Cu)phases.Elements Cu,Mg and Mn distribute unevenly from grain boundary to the inside of as-cast alloy.With the increase of homogenization temperature or the prolongation of holding time,the residual phases gradually dissolve into the matrixα(Al)and all the elements become more homogenized.According to the results of microstructural evolution,differential scanning calorimetry and X-ray diffraction,the optimum homogenization parameter is at 490°C for 24 h,which is consistent with the result of homogenization kinetic analysis. 展开更多
关键词 2026 aluminum alloy dendritic segregation HOMOGENIZATION microstructure evolution homogenization kinetics
在线阅读 下载PDF
Effects of mask wall angle on matrix-hole shape changes during electrochemical machining by mask 被引量:8
19
作者 李冬林 朱荻 +1 位作者 李寒松 刘金国 《Journal of Central South University》 SCIE EI CAS 2011年第4期1115-1120,共6页
The influences of the mask wall angle on the current density distribution,shape of the evolving cavity and machining accuracy were investigated in electrochemical machining(ECM) by mask.A mathematical model was develo... The influences of the mask wall angle on the current density distribution,shape of the evolving cavity and machining accuracy were investigated in electrochemical machining(ECM) by mask.A mathematical model was developed to predict the shape evolution during the ECM by mask.The current density distribution is sensitive to mask wall angle.The evolution of cavity is determined by the current density distribution of evolving workpiece surface.The maximum depth is away from the center of holes machined,which leads to the island appearing at the center of cavity for mask wall angles greater than or equal to 90°(β≥90°).The experimental system was established and the simulation results were experimentally verified.The results indicate that the simulation results of cavity shape are consistent with the actual ones.The experiments also show that the repetition accuracy of matrix-hole for β≥90° is higher than that for β<90°.A hole taper is diminished,and the machining accuracy is improved with the mask wall angle increasing. 展开更多
关键词 electrochemical machining matrix-hole machining accuracy current density distribution
在线阅读 下载PDF
Quantitative analysis on microstructure and high temperature fracture mechanism of 2.6vol%TiBw/Ti6Al4V composites with equiaxed microstructure after heat treatment
20
作者 PAN Jin-qi ZHANG Wen-cong +2 位作者 YANG Jian-lei CHEN Wen-zhen CUI Guo-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2307-2319,共13页
In this paper,the 2.6 vol%TiBw/Ti6Al4V composites with network architecture were fabricated by hot press sintering(HPS)at 1100℃ for 1 h,and the quantitative relationships between phases and heat treatment temperature... In this paper,the 2.6 vol%TiBw/Ti6Al4V composites with network architecture were fabricated by hot press sintering(HPS)at 1100℃ for 1 h,and the quantitative relationships between phases and heat treatment temperatures were established.The results showed that the volume fraction phases changed linearly with a range of solution temperature(930-1010℃)and aging temperature(400-600℃).Moreover,the composites with equiaxed microstructure were obtained due to the static recrystallization after solution treated at 950℃ for 1 h and aging treated at 600℃ for 12 h.The ultimate high temperature tensile strengths were 772,658,392 and 182 MPa,and the elongations were 9.1%,12.5%,28.6%and 35.3%at 400,500,600 and 700℃,respectively.In addition,fractured morphology analysis indicated the excellent strengthening effect of TiBw at a temperature below 600℃.However,the strengthening effect was significantly reduced due to the debonding of matrix and TiBw at 700℃ and caused the cracks to propagate along the grain boundary. 展开更多
关键词 titanium matrix composites(TMCs) heat treatment mechanical properties microstructure evolution
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部