期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向不同类型概念漂移的两阶段自适应集成学习方法 被引量:2
1
作者 郭虎升 张洋 王文剑 《计算机研究与发展》 EI CSCD 北大核心 2024年第7期1799-1811,共13页
大数据时代,流数据大量涌现.概念漂移作为流数据挖掘中最典型且困难的问题,受到了越来越广泛的关注.集成学习是处理流数据中概念漂移的常用方法,然而在漂移发生后,学习模型往往无法对流数据的分布变化做出及时响应,且不能有效处理不同... 大数据时代,流数据大量涌现.概念漂移作为流数据挖掘中最典型且困难的问题,受到了越来越广泛的关注.集成学习是处理流数据中概念漂移的常用方法,然而在漂移发生后,学习模型往往无法对流数据的分布变化做出及时响应,且不能有效处理不同类型概念漂移,导致模型泛化性能下降.针对这个问题,提出一种面向不同类型概念漂移的两阶段自适应集成学习方法(two-stage adaptive ensemble learning method for different types of concept drift,TAEL).该方法首先通过检测漂移跨度来判断概念漂移类型,然后根据不同漂移类型,提出“过滤-扩充”两阶段样本处理机制动态选择合适的样本处理策略.具体地,在过滤阶段,针对不同漂移类型,创建不同的非关键样本过滤器,提取历史样本块中的关键样本,使历史数据分布更接近最新数据分布,提高基学习器有效性;在扩充阶段,提出一种分块优先抽样方法,针对不同漂移类型设置合适的抽取规模,并根据历史关键样本所属类别在当前样本块上的规模占比设置抽样优先级,再由抽样优先级确定抽样概率,依据抽样概率从历史关键样本块中抽取关键样本子集扩充当前样本块,缓解样本扩充后的类别不平衡现象,解决当前基学习器欠拟合问题的同时增强其稳定性.实验结果表明,所提方法能够对不同类型的概念漂移做出及时响应,加快漂移发生后在线集成模型的收敛速度,提高模型的整体泛化性能. 展开更多
关键词 流数据 概念漂移 集成学习 漂移类型 过滤阶段 扩充阶段
在线阅读 下载PDF
弹性梯度集成的概念漂移适应
2
作者 郭虎升 张羽桐 王文剑 《计算机研究与发展》 北大核心 2025年第5期1235-1247,共13页
随着流数据的大量涌现,概念漂移已成为流数据挖掘中备受关注且具有挑战性的重要问题.目前,多数集成学习方法未针对性地识别概念漂移类型,并采取高效的集成适应策略,导致模型在不同漂移类型上的性能参差不齐.为此,提出了一种弹性梯度集... 随着流数据的大量涌现,概念漂移已成为流数据挖掘中备受关注且具有挑战性的重要问题.目前,多数集成学习方法未针对性地识别概念漂移类型,并采取高效的集成适应策略,导致模型在不同漂移类型上的性能参差不齐.为此,提出了一种弹性梯度集成的概念漂移适应(elastic gradient ensemble for concept drift adaptation,EGE_CD)方法.该方法首先通过提取梯度提升残差,计算流动残差比检测漂移位点,之后计算残差波动率识别漂移类型;然后,利用学习器损失变化提取漂移学习器,结合不同漂移类型与残差分布特征删除对应学习器,实现弹性梯度剪枝;最后,将增量学习与滑动采样方法结合,通过计算最优拟合率优化学习器拟合过程,再根据残差变化实现增量梯度生长.实验结果表明,所提方法提高了模型对不同漂移类型的稳定性与适应性,取得了良好的泛化性能. 展开更多
关键词 概念漂移 漂移类型 梯度提升 漂移检测 弹性梯度剪枝 增量梯度生长
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部