期刊文献+
共找到2,222篇文章
< 1 2 112 >
每页显示 20 50 100
基于SSA-IWT-EMD的滚动轴承故障诊断方法 被引量:2
1
作者 雷春丽 焦孟萱 +3 位作者 樊高峰 刘世超 薛林林 李建华 《北京航空航天大学学报》 北大核心 2025年第4期1152-1162,共11页
针对小波阈值降噪不充分及经验模态分解(EMD)特征频率提取不明显的问题,提出一种基于麻雀搜索算法-改进小波阈值-EMD(SSA-IWT-EMD)的滚动轴承故障诊断方法。引入2个调节因子,提出一种IWT函数,克服了传统软硬阈值的缺点,并运用SSA对其各... 针对小波阈值降噪不充分及经验模态分解(EMD)特征频率提取不明显的问题,提出一种基于麻雀搜索算法-改进小波阈值-EMD(SSA-IWT-EMD)的滚动轴承故障诊断方法。引入2个调节因子,提出一种IWT函数,克服了传统软硬阈值的缺点,并运用SSA对其各参数进行全局寻优,实现滚动轴承信号降噪。提出一种综合指标P对EMD产生的分量进行选取重构,突出信号的故障特征信息。采用包络谱分析实现轴承的故障诊断。仿真和实测结果验证了所提方法的有效性;同时与单一指标选取分量的方法及文献方法进行对比,说明了综合指标P和所提方法具有更强的降噪能力及特征提取能力,包络谱幅值及倍频成分更明显,可以更好地实现对滚动轴承的故障诊断。 展开更多
关键词 滚动轴承 改进阈值 综合指标 经验模态分解 故障诊断
在线阅读 下载PDF
基于CEEMDAN和熵特征的滚动轴承故障诊断 被引量:2
2
作者 高淑芝 陈雪峰 +1 位作者 张义民 石烁 《机械设计与制造》 北大核心 2025年第1期99-102,共4页
针对滚动轴承的故障诊断与分类,提出了一种基于自适应噪声完全集合经验模态分解(CEEMDAN)、模糊测度熵(FME)和粒子群优化算法-概率神经网络(PSO-PNN)的故障诊断方法。首先,CEEMDAN被用于分解振动信号,由于自适应噪声的加入,分解效果得... 针对滚动轴承的故障诊断与分类,提出了一种基于自适应噪声完全集合经验模态分解(CEEMDAN)、模糊测度熵(FME)和粒子群优化算法-概率神经网络(PSO-PNN)的故障诊断方法。首先,CEEMDAN被用于分解振动信号,由于自适应噪声的加入,分解效果得到最大改善。其次,基于FME,对包含故障的模式进行特征提取。最后,将特征向量输入到经过PSO优化的PNN中进行故障分类,优化后的PNN具有更准确的分类精度。通过实验案例验证,该方法的诊断能力得到验证,且分别与使用经验模态分解(EMD)和集合EMD(EEMD)分解方法进行对比,进一步体现了该方法的优越性。 展开更多
关键词 噪声辅助 模态分解 滚动轴承 故障诊断
在线阅读 下载PDF
基于1DCNN特征提取和RF分类的滚动轴承故障诊断
3
作者 张豪 刘其洪 +1 位作者 李伟光 李漾 《中国测试》 北大核心 2025年第4期137-143,共7页
针对深度学习技术在滚动轴承故障诊断识别中依赖于大量测量数据,相对较少的数据可能会导致过度拟合并降低模型的稳定性等问题,提出一种一维卷积神经网络(1DCNN)和随机森林(RF)相结合的轴承故障诊断模型。将原始时域信号输入搭建的1DCNN... 针对深度学习技术在滚动轴承故障诊断识别中依赖于大量测量数据,相对较少的数据可能会导致过度拟合并降低模型的稳定性等问题,提出一种一维卷积神经网络(1DCNN)和随机森林(RF)相结合的轴承故障诊断模型。将原始时域信号输入搭建的1DCNN网络中,提取原始数据特征向量,对特征向量进行t-SNE降维可视化,验证1DCNN特征提取的有效性。将特征向量输入随机森林实现故障状态识别,解决小样本的滚动轴承故障分类问题。在CWRU数据集和Paderborn数据集上进行实验,针对不同类型、不同损伤程度的轴承,得到分类结果准确率分别达到99.69%和99.16%。与传统的神经网络和机器学习分类模型相比,1DCNN-RF模型具有更高的诊断准确率,可验证所提模型的泛化性和有效性。 展开更多
关键词 滚动轴承 故障诊断 一维卷积神经网络 随机森林
在线阅读 下载PDF
基于MDAM-GhostCNN的滚动轴承故障诊断方法
4
作者 郭俊锋 谭宝宏 王智明 《北京航空航天大学学报》 北大核心 2025年第4期1172-1184,共13页
针对传统故障诊断方法特征提取不充分、计算复杂及在变工况下识别准确率低的问题,提出一种基于混合域注意力机制(MDAM)-GhostCNN的滚动轴承故障诊断方法。采用马尔可夫转移场(MTF)将轴承振动信号转化为具有时间相关性的二维特征图;利用G... 针对传统故障诊断方法特征提取不充分、计算复杂及在变工况下识别准确率低的问题,提出一种基于混合域注意力机制(MDAM)-GhostCNN的滚动轴承故障诊断方法。采用马尔可夫转移场(MTF)将轴承振动信号转化为具有时间相关性的二维特征图;利用Ghost卷积计算精简的优点,构造出GhostCNN;设计一种MDAM,使网络从通道和空间2个维度充分捕获特征信息,实现特征通道间相互依赖的同时让网络有效关注特征空间信息。由此,构建出MDAM-GhostCNN模型。将MTF二维特征图输入到MDAM-GhostCNN模型中进行训练并输出诊断结果。采用凯斯西储大学和江南大学(JNU)轴承数据集进行实验验证,并对其数据集进行加噪处理。结果表明:在变工况下,所建模型有着更高的识别准确率、抗噪性能和泛化性能。 展开更多
关键词 滚动轴承 故障诊断 马尔可夫转移场 Ghost卷积 注意力机制
在线阅读 下载PDF
基于转频脊线的滚动轴承阶次分析故障诊断
5
作者 张小丽 范攀锋 +3 位作者 李贤耀 王保建 梁旺 王芳珍 《噪声与振动控制》 北大核心 2025年第1期139-145,共7页
针对变转速状况下部分设备难以安装转速计而导致转速信息缺失的问题,提出基于阶次分析的无转速计滚动轴承故障诊断方法。同时针对振动信号处理中时频脊线提取精度不高、轴承转频脊线识别困难等问题,提出基于快速路径优化算法的多时频脊... 针对变转速状况下部分设备难以安装转速计而导致转速信息缺失的问题,提出基于阶次分析的无转速计滚动轴承故障诊断方法。同时针对振动信号处理中时频脊线提取精度不高、轴承转频脊线识别困难等问题,提出基于快速路径优化算法的多时频脊线提取方法和基于脊线拟合优度指标的转频脊线识别方法。首先,利用快速路径优化算法可以抑制相邻时刻频率跳变的特点,提高时频脊线提取精度;其次,通过计算脊线拟合优度值的方法从所提取的多条时频脊线中识别出转频脊线;最后利用识别的转频脊线结合阶次分析,对滚动轴承故障实验振动信号进行分析,验证所提滚动轴承故障诊断方法的可行性。 展开更多
关键词 故障诊断 滚动轴承 脊线识别 阶次分析 变转速工况
在线阅读 下载PDF
频谱能量增强的IEWT滚动轴承故障诊断方法
6
作者 古莹奎 李成 吴宽 《机械设计与制造》 北大核心 2025年第1期70-74,81,共6页
尺度空间方法的经验小波变换(EWT)在滚动轴承故障诊断中容易出现共振频带过度分割、频带破裂,导致故障诊断失败。为此,提出频谱增强的改进经验小波滚动轴承故障诊断方法。首先,将Teager能量算子引入信号频谱,利用能量算子能够追踪并增... 尺度空间方法的经验小波变换(EWT)在滚动轴承故障诊断中容易出现共振频带过度分割、频带破裂,导致故障诊断失败。为此,提出频谱增强的改进经验小波滚动轴承故障诊断方法。首先,将Teager能量算子引入信号频谱,利用能量算子能够追踪并增强信号瞬时成分能量的特点,对信号频谱瞬时冲击进行能量增强,减小噪声对信号频谱的影响;其次,对能量增强后频谱进行频带极大值包络的改进经验小波变换(IEWT)分解,得到一系列固有模态;最后,对裕度因子最大的固有模态进行包络解调分析,提取轴承故障特征。分析结果表明,所提方法能够增强故障引起的瞬态冲击成分,减少噪声对频谱分割的影响,有效地避免共振频带的过度分割导致的频带破裂。 展开更多
关键词 频谱能量增强 改进经验小波变换 TEAGER能量算子 滚动轴承 故障诊断
在线阅读 下载PDF
一种小样本滚动轴承故障诊断算法
7
作者 宋存利 王子卓 时维国 《中国惯性技术学报》 北大核心 2025年第1期96-106,共11页
针对卷积神经网络在处理滚动轴承时域信号时难以充分提取特征、故障样本稀少及模型泛化性能不足的问题,提出一种基于注意力机制的增强卷积神经网络小样本故障诊断方法。首先,使用连续小波变换将轴承振动信号转化为二维时频图像,以便可... 针对卷积神经网络在处理滚动轴承时域信号时难以充分提取特征、故障样本稀少及模型泛化性能不足的问题,提出一种基于注意力机制的增强卷积神经网络小样本故障诊断方法。首先,使用连续小波变换将轴承振动信号转化为二维时频图像,以便可视化其特征。然后,通过数据增强扩充样本数据,提升模型在小样本情况下的泛化性。为提高特征提取和模型泛化能力,使用MixConv将ConvNeXt V2模型的7×7卷积层重构为不同大小的并行卷积核,增强多尺度特征提取效果;引入卷积注意力机制模块(CBAM)提升关键特征识别能力。该模型在凯斯西储大学、东南大学和渥太华大学的故障数据集上进行实验验证。实验结果表明,所提模型对不同故障的识别率均为100%,与目前常用的7个模型相比,在相同条件下故障识别准确率最高,具有较强的泛化性能。 展开更多
关键词 滚动轴承 故障诊断 注意力机制 连续小波变换 卷积神经网络
在线阅读 下载PDF
基于连续小波变换的CNN—SVM农机滚动轴承故障诊断
8
作者 沈伟杰 肖茂华 +1 位作者 宋新民 项腾飞 《中国农机化学报》 北大核心 2025年第4期254-264,共11页
针对农用机械滚动轴承故障诊断中轴承振动信号非线性、非平稳特性以及故障特征表征不明显的问题,提出一种基于连续小波变换(CWT)、卷积神经网络(CNN)和支持向量机(SVM)的滚动轴承故障诊断方法(CWT—CNN—SVM)。首先,利用CWT对滚动轴承... 针对农用机械滚动轴承故障诊断中轴承振动信号非线性、非平稳特性以及故障特征表征不明显的问题,提出一种基于连续小波变换(CWT)、卷积神经网络(CNN)和支持向量机(SVM)的滚动轴承故障诊断方法(CWT—CNN—SVM)。首先,利用CWT对滚动轴承振动信号进行多尺度时频分析,为后续故障诊断提供更详细的特征;然后,将提取到的时频图作为输入,利用CNN深层次学习故障特征信息;最后,采用SVM对输出结果进行分类,以实现精确的故障类型识别。与BPNN、SVM、CWT—CNN以及CWT—ResNet等方法比较,试验结果表明,CWT—CNN—SVM故障诊断准确率最高,单次准确率达到100%,5次重复试验准确率为99.62%。CWT—CNN—SVM在处理复杂的滚动轴承故障诊断问题时,不仅诊断准确,同时展现出深度学习与故障诊断相结合的优势,能进一步提升小数据集的性能。所提出的CWT—CNN—SVM方法对于提升农机滚动轴承故障诊断性能,具有一定的理论价值和实际应用前景。 展开更多
关键词 故障诊断 农机 滚动轴承 连续小波变换 卷积神经网络 支持向量机
在线阅读 下载PDF
一种SCNGO-MMPE-VMD的滚动轴承故障诊断方法
9
作者 张涛 魏彪 +2 位作者 李永健 马赫 何勇 《现代电子技术》 北大核心 2025年第12期54-60,共7页
针对滚动轴承故障诊断中种群分布不均匀及算法早熟收敛问题,提出一种SCNGO-MMPE-VMD的滚动轴承故障诊断方法。首先,利用折射反向学习方法初始化种群,并生成反向解,有效扩大搜索范围;然后,将正余弦算法(SCA)策略引入北方苍鹰优化算法(NGO... 针对滚动轴承故障诊断中种群分布不均匀及算法早熟收敛问题,提出一种SCNGO-MMPE-VMD的滚动轴承故障诊断方法。首先,利用折射反向学习方法初始化种群,并生成反向解,有效扩大搜索范围;然后,将正余弦算法(SCA)策略引入北方苍鹰优化算法(NGO)勘察阶段,通过非线性加权系数ω动态调节步长搜索因子,降低个体位置更新对局部信息的依赖,显著提高算法收敛速度与精度;最后,构建多尺度均值排列熵(MMPE)与峭度的融合指标作为适应度函数,增强故障特征敏感性。通过对不同的实测信号进行测试,结果表明,在强噪声干扰下,相较传统方法,所提方法可提前300 min(初期故障)和700 min(微弱故障)识别故障特征,验证了其工程实用性。 展开更多
关键词 正余弦算法 滚动轴承 故障诊断 改进北方苍鹰优化算法 多尺度均值排列熵 变分模态分解
在线阅读 下载PDF
基于小波包分解和神经网络集成群的滚动轴承故障诊断
10
作者 柴立平 孟壮壮 +1 位作者 石海峡 李强 《合肥工业大学学报(自然科学版)》 北大核心 2025年第4期447-454,共8页
文章提出一种将多个神经网络相结合的神经网络集成群算法进行滚动轴承故障诊断。首先对原始振动信号进行小波包变换,分别采用小波包能量和小波包样本熵作为特征向量;其次采用多个粒子群优化反向传播(particle swarm optimization-back p... 文章提出一种将多个神经网络相结合的神经网络集成群算法进行滚动轴承故障诊断。首先对原始振动信号进行小波包变换,分别采用小波包能量和小波包样本熵作为特征向量;其次采用多个粒子群优化反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络分别对轴承进行故障诊断,比较分析小波包能量和小波包样本熵作为特征向量的适配程度;再以多个神经网络作为神经网络集成群的基础子网络,通过统计耦合、输出耦合和统计输出耦合形成神经网络集成群的二级网络;最后通过最终统计耦合输出神经网络集成群的分类结果。研究结果表明,该方法可获得理想的滚动轴承故障诊断准确率,在负载变化时具有良好的泛化性能。 展开更多
关键词 滚动轴承 故障诊断 小波包变换 粒子群优化反向传播神经网络 神经网络集成群
在线阅读 下载PDF
基于快速学习图卷积网络的滚动轴承故障诊断研究
11
作者 宁少慧 董振才 +1 位作者 戎有志 周利东 《机床与液压》 北大核心 2025年第12期53-59,共7页
图神经网络跨层的递归邻域扩展为训练大型密集图带来时间方面的挑战,导致轴承故障诊断的训练效率不高。针对此问题,提出一种基于快速学习图卷积网络方法并将其应用于滚动轴承故障诊断中。利用快速傅里叶变换(FFT)将采集的轴承故障时域... 图神经网络跨层的递归邻域扩展为训练大型密集图带来时间方面的挑战,导致轴承故障诊断的训练效率不高。针对此问题,提出一种基于快速学习图卷积网络方法并将其应用于滚动轴承故障诊断中。利用快速傅里叶变换(FFT)将采集的轴承故障时域信号转化为频域数据,再利用K近邻(KNN)算法将频域信号转换为图数据,以图数据显示频域特征,极大丰富了输入信息;引入快速学习图卷积网络(Fast-GCN)模型,通过重要性采样对故障特征进行学习;最后,利用Log-Softmax函数输出最终分类结果,从而实现滚动轴承单一故障的分类。实验结果表明:所提模型在保证故障分类准确率的前提下,诊断速度显著提升,甚至比图卷积神经网络(GCN)的诊断速度增加了约1倍,且所提方法具有良好的半监督诊断性能与泛化能力。 展开更多
关键词 滚动轴承 故障诊断 K近邻(KNN)算法 快速傅里叶变换(FFT) 快速学习图卷积网络(Fast-GCN)
在线阅读 下载PDF
滚动轴承故障诊断实验平台开发及翻转课堂实验实施
12
作者 代伟 杨翊卓 +1 位作者 刘江 常俊林 《实验室研究与探索》 北大核心 2025年第4期32-36,共5页
为了适应高校本科生课程机械故障诊断学基础及研究生课程智能故障诊断技术的实验教学要求,设计并开发了滚动轴承故障诊断实验平台,包括现场故障诊断、轴承数据处理、算法实验验证等多个模块。应用结果表明,该实验平台操作简单,实现了智... 为了适应高校本科生课程机械故障诊断学基础及研究生课程智能故障诊断技术的实验教学要求,设计并开发了滚动轴承故障诊断实验平台,包括现场故障诊断、轴承数据处理、算法实验验证等多个模块。应用结果表明,该实验平台操作简单,实现了智能算法便捷验证与工业应用的一体化开发。在此基础上,构建了故障诊断翻转课堂实验模式,为工业智能化方向拔尖创新人才培养提供了良好的实验创新环境。 展开更多
关键词 故障诊断 实验平台 滚动轴承 翻转课堂实验
在线阅读 下载PDF
基于COA-CNN的滚动轴承故障诊断方法研究
13
作者 别锋锋 周兆龙 +3 位作者 李倩倩 丁学平 袁为栋 张瀚阳 《噪声与振动控制》 北大核心 2025年第4期136-142,共7页
滚动轴承大多处于高速、高负载的复杂工况,通常存在较强的非平稳非线性特征,使得对其振动信号分析、故障识别困难。对此,提出一种基于浣熊算法(Coati Optimization Algorithm,COA)优化卷积神经网络(Convolutional Neural Network,CNN)... 滚动轴承大多处于高速、高负载的复杂工况,通常存在较强的非平稳非线性特征,使得对其振动信号分析、故障识别困难。对此,提出一种基于浣熊算法(Coati Optimization Algorithm,COA)优化卷积神经网络(Convolutional Neural Network,CNN)的故障诊断方法。首先利用差分连续小波变换(Difference Continuous Wavelet Transform,DCWT)对原始振动信号进行预处理,获取包含完整原始特征信息的小波时频图,通过构建COA-CNN模型优化神经网络的核心参数,对所获取的时频特征信息进行识别,由此完成滚动轴承的非平稳信息的提取和模式识别。实验仿真和工程应用研究表明,在复杂工况下该方法可以有效实现滚动轴承典型故障模式的识别。 展开更多
关键词 故障诊断 滚动轴承 卷积神经网络 小波变换 时频图 模式识别
在线阅读 下载PDF
基于CFasterVit-TFAM与COS-UMAP模型的滚动轴承故障诊断
14
作者 戚晓利 崔德海 +4 位作者 王志文 赵方祥 王兆俊 毛俊懿 杨文好 《振动与冲击》 北大核心 2025年第10期287-300,共14页
针对FasterVit网络存在的注意力机制失衡、池化策略缺陷导致部分重要特征无法保留和损失函数不能全面考虑所有类别的信息导致学习到的特征比较分散等问题,提出了一种基于CFasterVit-三并联分支融合注意力机制(triple-parallel fusion at... 针对FasterVit网络存在的注意力机制失衡、池化策略缺陷导致部分重要特征无法保留和损失函数不能全面考虑所有类别的信息导致学习到的特征比较分散等问题,提出了一种基于CFasterVit-三并联分支融合注意力机制(triple-parallel fusion attention model,TFAM)与余弦均匀流形逼近与投影(cosineuniform manifold approximation and projection,COS-UMAP)模型的滚动轴承故障诊断方法。该模型由FasterVit-TFAM网络、COS-UMAP降维算法和激活函数类距均值标准差损失函数(class-distance mean standard deviation loss,CMSD)-Softmax组成。首先,提出了一种新的注意力机制TFAM,并与FasterVit网络结合,提升了FasterVit网络信息关注的均衡性和表征能力;其次,将基于COS-UMAP降维算法取代FasterVit网络全连接层前最后一次池化操作,有效筛选并保留多维数据中的重要特征;最后,将类距均值标准差损失函数替换Softmax激活函数中的交叉熵损失函数,更全面地学习特征并提高模型的泛化性。西安交通大学滚动轴承数据集滚动轴承故障试验结果表明,TFAM注意力机制和其他注意力机制相比诊断准确率最大提升8.0%,COS-UMAP对比其他降维算法诊断准确率最大提升15.8%,CMSD对比交叉熵损失函数诊断准确率提升0.5%,所提模型对故障样本的识别准确率达到了99.6%,相比FasterVit提升了1.4%,相较于其他网络模型最大提升7.8%;东南大学滚动轴承数据集仿真验证试验结果表明,所提模型对故障样本识别率达98.6%,相比FasterVit提升了2.2%,平均每轮训练时间缩短了16.92 s,对比其他网络模型最大提升12.2%,有效提高了滚动轴承故障诊断模型的准确率和泛化性能。 展开更多
关键词 故障诊断 滚动轴承 FasterVit 注意力机制 均匀流形逼近与投影 类距均值标准差损失函数
在线阅读 下载PDF
小样本下基于MTF与SSCAM-MSCNN的滚动轴承变工况故障诊断方法
15
作者 雷春丽 焦孟萱 +2 位作者 薛林林 张护强 史佳硕 《计算机集成制造系统》 北大核心 2025年第1期278-289,共12页
针对滚动轴承在不同工况条件下样本分布不同以及故障样本数量不足导致故障诊断精度低、泛化性能差的问题,提出一种小样本下基于MTF与SSCAM-MSCNN的滚动轴承变工况故障诊断方法。首先,运用马尔科夫转移场(MTF)将一维振动信号转化为具有... 针对滚动轴承在不同工况条件下样本分布不同以及故障样本数量不足导致故障诊断精度低、泛化性能差的问题,提出一种小样本下基于MTF与SSCAM-MSCNN的滚动轴承变工况故障诊断方法。首先,运用马尔科夫转移场(MTF)将一维振动信号转化为具有时间相关性的二维特征图。其次,提出条纹自校正注意力机制(SSCAM),它不仅可以加强模型在长距离方向上的特征提取能力,还能建立通道间依赖关系,可以对全局有效信息进行捕捉。然后,将SSCAM引入到多尺度神经网络(MSCNN)中,构建出SSCAM-MSCNN模型。最后,将MTF二维特征图输入到所提模型中进行训练,采用优化后的网络模型进行测试并输出分类结果。通过美国凯斯西储大学以及本实验室MFS滚动轴承数据集对所提方法进行验证,同时对后者进行加噪处理,与其他故障诊断模型进行对比。试验结果表明,所提方法在小样本、变工况条件下具有更高的识别精度、更强的泛化性能与抗噪性能。 展开更多
关键词 滚动轴承 马尔科夫转移场 卷积神经网络 条纹自校正注意力机制 小样本 故障诊断
在线阅读 下载PDF
基于CWT-IDenseNet的滚动轴承故障诊断方法
16
作者 贾广飞 梁汉文 +2 位作者 杨金秋 武哲 韩雨欣 《河北科技大学学报》 北大核心 2025年第2期129-140,共12页
针对一维信号所含信息不全面和DenseNet网络在变工况下存在过拟合等问题,提出了基于连续小波变换时频图像和改进密集连接卷积网络(improved DenseNet,IDenseNet)的滚动轴承故障诊断方法CWT-IDenseNet。首先,将一维振动信号通过CWT转为... 针对一维信号所含信息不全面和DenseNet网络在变工况下存在过拟合等问题,提出了基于连续小波变换时频图像和改进密集连接卷积网络(improved DenseNet,IDenseNet)的滚动轴承故障诊断方法CWT-IDenseNet。首先,将一维振动信号通过CWT转为二维时频图像;其次,对DenseNet网络进行改进,将DenseNet第1个卷积块中的ReLU激活函数替换为Swish激活函数(Swish激活函数更平滑);同时,在网络中引入基于风格的卷积神经网络重校准模块(style-based recalibration module,SRM)和空间与通道注意力机制模块(convolutional block attention module,CBAM),SRM关注特征通道权重,CBAM则从通道和空间2个维度增强特征表达能力,进而得到IDenseNet;最后,将二维时频图像输入到IDenseNet模型中进行特征提取和故障诊断,通过模型的Softmax层输出故障诊断结果。结果表明,所提方法在恒定工况及变工况下的平均故障识别准确率均达到97.80%,且在迁移学习模型中,平均故障识别准确率达到了99.44%。CWT-IDenseNet方法可以有效提高模型的泛化能力,在恒定工况及变工况下具有显著优势,对提高滚动轴承故障诊断的准确率和可靠性具有参考价值。 展开更多
关键词 机械动力学与振动 滚动轴承故障诊断 连续小波变换 密集连接卷积网络 注意力机制
在线阅读 下载PDF
基于个性化联邦迁移学习的滚动轴承故障诊断 被引量:1
17
作者 李世昌 徐超 汪永超 《组合机床与自动化加工技术》 北大核心 2025年第3期145-149,共5页
为了解决滚动轴承故障诊断中样本分布差异大、有效故障样本少以及不同故障样本数量不均衡所导致的诊断精度较低的问题;提出基于个性化联邦迁移学习(personalized federated transfer learning,PFTL)的滚动轴承故障诊断方法。在所提出的P... 为了解决滚动轴承故障诊断中样本分布差异大、有效故障样本少以及不同故障样本数量不均衡所导致的诊断精度较低的问题;提出基于个性化联邦迁移学习(personalized federated transfer learning,PFTL)的滚动轴承故障诊断方法。在所提出的PFTL中,首先在预训练阶段,将不同分布的各类型故障样本作为联邦学习的各个客户端的输入,并引入贝叶斯层级模型对联邦学习的本地训练和聚合规则进行个性化调整,从而使得预训练模型在避免过拟合问题的同时具有较强的泛化能力;其次引入模型补丁,对预训练模型结构进行调整,并利用目标任务样本对模型进一步微调;最后在CWRU轴承数据集上进行故障诊断实验。实验结果证明所提方法的有效性。 展开更多
关键词 滚动轴承 故障诊断 联邦学习 迁移学习 个性化
在线阅读 下载PDF
基于数字孪生的滚动轴承故障诊断方法研究 被引量:2
18
作者 汪健 王华 +2 位作者 戴天赐 王金明 李帅康 《传感器与微系统》 北大核心 2025年第3期17-20,共4页
针对传统滚动轴承故障诊断方法诊断当下复杂设备仍具有一定的局限性的问题,提出一种基于数字孪生驱动的滚动轴承故障诊断方法。首先,构建滚动轴承的数字孪生体,通过动力学仿真获取故障特征数据;其次,利用包络谱分析验证数据的有效性;最... 针对传统滚动轴承故障诊断方法诊断当下复杂设备仍具有一定的局限性的问题,提出一种基于数字孪生驱动的滚动轴承故障诊断方法。首先,构建滚动轴承的数字孪生体,通过动力学仿真获取故障特征数据;其次,利用包络谱分析验证数据的有效性;最后,利用深度学习对仿真数据进行分析,并以迁移学习的方式实现对物理空间实体设备的故障诊断。实验结果表明,以滚动轴承为研究对象建立的数字孪生体模型,虚拟故障数据是有效的,并且建立的孪生数据诊断模型能较为准确的实现故障诊断。 展开更多
关键词 数字孪生 滚动轴承 动力学建模 深度学习 故障诊断
在线阅读 下载PDF
基于CNN-SN和无监督域适应的滚动轴承故障诊断 被引量:1
19
作者 陈攀 袁逸萍 +2 位作者 马军岩 樊盼盼 田芳 《轴承》 北大核心 2025年第2期93-101,共9页
针对滚动轴承在不同工况下振动数据分布差异大且难以获取所有故障标记样本,致使故障诊断模型泛化能力差的问题,提出了一种基于卷积神经网络-收缩网络(CNN-SN)和无监督域适应的变工况故障诊断方法。首先,构建领域共享的一维卷积神经网络... 针对滚动轴承在不同工况下振动数据分布差异大且难以获取所有故障标记样本,致使故障诊断模型泛化能力差的问题,提出了一种基于卷积神经网络-收缩网络(CNN-SN)和无监督域适应的变工况故障诊断方法。首先,构建领域共享的一维卷积神经网络以提取振动信号中的故障特征,同时引入软阈值学习机制构建局部特征收缩网络,缓解噪声对故障特征提取的影响;然后,对不同工况样本提取的故障特征引入最大均值差异的正则化约束,实现源域与目标域特征的全局对齐;最后,对无标签的目标工况样本,采用最大最小化分类器差异的对抗学习策略实现不同域特征更细粒度的子领域对齐。采用江南大学轴承数据集对所提方法进行试验验证,结果表明所提方法表现出良好的领域适配能力,具有较高的跨域故障诊断精度。 展开更多
关键词 滚动轴承 故障诊断 变工况 迁移学习 无监督域适应
在线阅读 下载PDF
基于孪生表征对比学习的滚动轴承半监督故障诊断
20
作者 陈仁祥 张旭 +3 位作者 杨黎霞 梁栋 孙世政 董绍江 《振动与冲击》 北大核心 2025年第15期209-216,共8页
针对实际工程中滚动轴承故障数据标注成本昂贵,导致标签样本数量难以满足有监督模型训练需求的问题,提出基于孪生表征对比学习的滚动轴承半监督故障诊断方法。首先,利用添加高斯白噪声的数据增强方式在无标签数据上施加不同程度扰动得... 针对实际工程中滚动轴承故障数据标注成本昂贵,导致标签样本数量难以满足有监督模型训练需求的问题,提出基于孪生表征对比学习的滚动轴承半监督故障诊断方法。首先,利用添加高斯白噪声的数据增强方式在无标签数据上施加不同程度扰动得到正样本对,同时构建权重共享的孪生自校正卷积神经网络提取正样本对中高维特征;其次,基于对比学习策略构建负余弦相似度损失函数对正样本对的特征进行对比,通过最大化特征间的相关性为预训练阶段构建监督信息,促使模型学习无标签数据中正样本对一致性特征表示;然后,引入少量标签样本参与微调,建立特征表示与标签之间的映射关系;最终,将待测数据输入到微调后编码器模型,实现了滚动轴承的半监督故障诊断。所提方法从大量未标注数据中学习数据的内在结构和特征表示,不依赖于昂贵的标注过程。通过采集的滚动轴承数据和公共数据集HUST bearing进行试验验证,所提方法准确率均达到97%以上,证明了所提方法具有良好的诊断性能。 展开更多
关键词 滚动轴承 故障诊断 半监督 对比学习 自校正卷积
在线阅读 下载PDF
上一页 1 2 112 下一页 到第
使用帮助 返回顶部