期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于自适应MOMEDA与VMD的滚动轴承早期故障特征提取 被引量:16
1
作者 刘岩 伍星 +1 位作者 刘韬 陈庆 《振动与冲击》 EI CSCD 北大核心 2019年第23期219-229,共11页
轴承故障衍生早期,由于故障尺寸较小且易受环境噪声和信号衰减的影响,因此故障冲击信号往往非常微弱。变分模态分解(Variational Mode Decomposition,VMD)已经在轴承的故障特征提取中有一定的应用,但对于背景噪声较强时的滚动轴承的微... 轴承故障衍生早期,由于故障尺寸较小且易受环境噪声和信号衰减的影响,因此故障冲击信号往往非常微弱。变分模态分解(Variational Mode Decomposition,VMD)已经在轴承的故障特征提取中有一定的应用,但对于背景噪声较强时的滚动轴承的微弱故障提取效果并不理想。针对这一问题,将改进多点优化最小熵解卷积(Multipoint Optimal Minimum Entropy Deconvolution Adjusted,MOMEDA)与VMD相结合,研究了滤波器长度对MOMEDA效果的影响,提出基于进退法确定最优滤波器长度的自适应MOMEDA方法。利用自适应MOMEDA对信号降噪并避免传统MED迭代以及滤波后可能出现的虚假峰值。将自适应MOMEDA降噪后的信号使用VMD进行分解,然后依据谱峭度大小进行重构,对重构之后的信号进行故障特征提取,取得了较好的效果。最后通过实验验证了方法的可行性及有效性。 展开更多
关键词 多点优化最小熵解卷积 变分模态分解 谱峭度 滚动轴承早期故障 进退法
在线阅读 下载PDF
基于自适应优化的TQWT轴承早期故障诊断方法
2
作者 黄慧杰 刘桐桐 任学平 《制造技术与机床》 北大核心 2019年第2期137-142,共6页
为了准确提取滚动轴承早期微弱故障特征,提出基于自适应优化的可调品质因子小波变换(tunable Q-factor wavelet transform,TQWT)轴承早期故障诊断方法。该方法利用包络谱特征频率强度系数的参数自适应寻优方法来自适应优化TQWT,以弥补传... 为了准确提取滚动轴承早期微弱故障特征,提出基于自适应优化的可调品质因子小波变换(tunable Q-factor wavelet transform,TQWT)轴承早期故障诊断方法。该方法利用包络谱特征频率强度系数的参数自适应寻优方法来自适应优化TQWT,以弥补传统TQWT参数选择过分依赖人工经验的不足。首先利用该方法获得振动信号的最优分解结果,然后通过分析最优分解结果的包络谱来判断轴承故障类型。通过分析仿真信号以及工程试验数据证明了该方法的有效性。 展开更多
关键词 滚动轴承早期故障 可调品质因子小波变换 特征频率强度系数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部