期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
基于CWT-IDenseNet的滚动轴承故障诊断方法
1
作者 贾广飞 梁汉文 +2 位作者 杨金秋 武哲 韩雨欣 《河北科技大学学报》 北大核心 2025年第2期129-140,共12页
针对一维信号所含信息不全面和DenseNet网络在变工况下存在过拟合等问题,提出了基于连续小波变换时频图像和改进密集连接卷积网络(improved DenseNet,IDenseNet)的滚动轴承故障诊断方法CWT-IDenseNet。首先,将一维振动信号通过CWT转为... 针对一维信号所含信息不全面和DenseNet网络在变工况下存在过拟合等问题,提出了基于连续小波变换时频图像和改进密集连接卷积网络(improved DenseNet,IDenseNet)的滚动轴承故障诊断方法CWT-IDenseNet。首先,将一维振动信号通过CWT转为二维时频图像;其次,对DenseNet网络进行改进,将DenseNet第1个卷积块中的ReLU激活函数替换为Swish激活函数(Swish激活函数更平滑);同时,在网络中引入基于风格的卷积神经网络重校准模块(style-based recalibration module,SRM)和空间与通道注意力机制模块(convolutional block attention module,CBAM),SRM关注特征通道权重,CBAM则从通道和空间2个维度增强特征表达能力,进而得到IDenseNet;最后,将二维时频图像输入到IDenseNet模型中进行特征提取和故障诊断,通过模型的Softmax层输出故障诊断结果。结果表明,所提方法在恒定工况及变工况下的平均故障识别准确率均达到97.80%,且在迁移学习模型中,平均故障识别准确率达到了99.44%。CWT-IDenseNet方法可以有效提高模型的泛化能力,在恒定工况及变工况下具有显著优势,对提高滚动轴承故障诊断的准确率和可靠性具有参考价值。 展开更多
关键词 机械动力学与振动 滚动轴承故障诊断 连续小波变换 密集连接卷积网络 注意力机制
在线阅读 下载PDF
复合多尺度包络模糊熵在滚动轴承故障诊断中的应用
2
作者 李姜宏 郑近德 +2 位作者 潘海洋 程健 童靳于 《振动与冲击》 北大核心 2025年第9期274-281,共8页
模糊熵(fuzzy entropy, FE)自提出以来就被广泛用于滚动轴承振动信号的时间序列复杂性度量,但模糊熵在单一时间序列的分析中可能无法充分捕获轴承振动信号所有故障特征。针对这一弊端,定义出一种包络模糊熵(envelope fuzzy entropy, EFE... 模糊熵(fuzzy entropy, FE)自提出以来就被广泛用于滚动轴承振动信号的时间序列复杂性度量,但模糊熵在单一时间序列的分析中可能无法充分捕获轴承振动信号所有故障特征。针对这一弊端,定义出一种包络模糊熵(envelope fuzzy entropy, EFE)作为新的复杂性度量指标。进一步利用复合粗粒化的方式对时间序列的包络信号进行复合多尺度处理,提出了复合多尺度包络模糊熵(composite multi-scale envelope fuzzy entropy, CMEFE),旨在全面揭示信号的故障特征。此外,通过仿真信号验证了CMEFE能够区分不同类型的模拟信号,对比其他非线性动力学方法,结果表明提出的方法对于不同模拟信号的区分效果更为显著。在此基础上,提出一种基于复合多尺度包络模糊熵与萤火虫优化支持向量机的滚动轴承故障诊断方法。与现有方法进行对比,验证了该方法的可行性与优越性。 展开更多
关键词 模糊熵(FE) 包络模糊熵(EFE) 多尺度模糊熵 复合多尺度包络模糊熵(CMEFE) 萤火虫优化支持向量机 滚动轴承故障诊断
在线阅读 下载PDF
基于属性强度关联性矩阵的零样本滚动轴承故障诊断
3
作者 苑茹 马萍 +3 位作者 张宏立 王聪 王瑾春 李家声 《振动与冲击》 北大核心 2025年第2期302-311,共10页
针对传统有监督学习模型难以辨别滚动轴承未知类故障的问题,提出一种基于属性强度关联性矩阵的零样本滚动轴承故障诊断模型。首先,利用样本之间属性强度关系对数据库中故障样本进行细粒度描述,建立各故障样本与故障类别间的关联关系;其... 针对传统有监督学习模型难以辨别滚动轴承未知类故障的问题,提出一种基于属性强度关联性矩阵的零样本滚动轴承故障诊断模型。首先,利用样本之间属性强度关系对数据库中故障样本进行细粒度描述,建立各故障样本与故障类别间的关联关系;其次,引入自适应深度可分离残差网络提取故障属性相关的特征信息;最后,根据属性细粒度描述和特征信息,使用属性学习模块预测未知类故障的属性,通过计算其与属性矩阵的欧氏距离,实现零样本轴承故障的诊断。试验结果表明,相较于其他模型,该模型在识别未知滚动轴承故障类别方面取得了优异的性能,平均诊断准确率达到90.45%,验证了该模型的有效性与优越性,为实际生产提供了有益的应用价值。 展开更多
关键词 滚动轴承故障诊断 零样本学习 属性强度关联性矩阵 特征提取 属性学习
在线阅读 下载PDF
基于多源域自适应残差网络的滚动轴承故障诊断 被引量:3
4
作者 高学金 张震华 +1 位作者 高慧慧 齐咏生 《振动与冲击》 EI CSCD 北大核心 2024年第7期290-299,共10页
针对传统无监督领域自适应方法扩展到多工况滚动轴承故障诊断场景适用性较弱的问题,提出了一种多源域自适应残差网络(multi-source domain adaptive residual network,MDARN),通过对齐来自多个源域的相关子域,从而提高模型在多工况下的... 针对传统无监督领域自适应方法扩展到多工况滚动轴承故障诊断场景适用性较弱的问题,提出了一种多源域自适应残差网络(multi-source domain adaptive residual network,MDARN),通过对齐来自多个源域的相关子域,从而提高模型在多工况下的故障诊断性能。首先,利用ResNeXt残差网络从源域和目标域充分提取可迁移特征;然后,引入局部最大平均差异(local maximum mean difference,LMMD)准则,以两个源域的子域为基础对齐目标域中相关子域,减少相关子域间和全局域间的分布差异;最后,利用美国凯斯西储大学轴承数据集和MFS机械综合故障试验台产生的真实的轴承振动数据集,对所提方法进行了试验验证。结果表明,该方法在多工况下的平均故障诊断精度高达99.76%。与现有代表性方法相比,所提方法具有更好的故障诊断效果。 展开更多
关键词 滚动轴承故障诊断 多源域自适应残差网络(MDARN) 领域自适应 局部最大均值差异(LMMD)
在线阅读 下载PDF
基于IMSE和参数优化VMD的滚动轴承故障诊断方法
5
作者 王敏娟 贾茜 +1 位作者 汪友明 丁文柯 《西安邮电大学学报》 2024年第4期111-118,共8页
针对滚动轴承振动信号特征提取难和故障诊断精度低的问题,提出一种基于改进的多尺度样本熵(Improved Multiscale Sample Entropy,IMSE)和参数优化变分模态分解(Variational Mode Decomposition,VMD)的滚动轴承故障诊断方法。该方法先利... 针对滚动轴承振动信号特征提取难和故障诊断精度低的问题,提出一种基于改进的多尺度样本熵(Improved Multiscale Sample Entropy,IMSE)和参数优化变分模态分解(Variational Mode Decomposition,VMD)的滚动轴承故障诊断方法。该方法先利用IMSE对原始时间序列进行平滑粗粒化,并用每个序列的最大值代替平均值表示粗粒化序列的信息,避免多尺度样本熵(Multiscale Sample Entropy,MSE)中存在的数据丢失问题。结合尺度谱与求和模糊熵优化VMD参数,得到最优模态分量并筛选重构信号,将重构信号的IMSE值作为特征向量输入支持向量机进行故障诊断。实验结果表明,所提方法获得了更精确的故障信号特征且提高了故障诊断精度。 展开更多
关键词 滚动轴承故障诊断 变分模态分解 尺度谱 求和模糊熵 多尺度样本熵
在线阅读 下载PDF
基于EMD与神经网络的滚动轴承故障诊断方法 被引量:151
6
作者 杨宇 于德介 程军圣 《振动与冲击》 EI CSCD 北大核心 2005年第1期85-88,共4页
针对滚动轴承故障振动信号的非平稳特征,提出了一种基于经验模态分解(EmpiricalModeDecomposition ,简称EMD)和神经网络的滚动轴承故障诊断方法。该方法首先对原始信号进行了经验模态分解,将其分解为多个平稳 的固有模态函数(Intrin... 针对滚动轴承故障振动信号的非平稳特征,提出了一种基于经验模态分解(EmpiricalModeDecomposition ,简称EMD)和神经网络的滚动轴承故障诊断方法。该方法首先对原始信号进行了经验模态分解,将其分解为多个平稳 的固有模态函数(IntrinsicModefunction,简称IMF)之和,再选取若干个包含主要故障信息的IMF分量进行进一步分析, 由于滚动轴承发生故障时,加速度振动信号各频带的能量会发生变化,因而可从各IMF分量中提取能量特征参数作为神 经网络的输入参数来识别滚动轴承的故障类型。对滚动轴承的正常状态、内圈故障和外圈故障信号的分析结果表明,以 EMD为预处理器提取各频带能量作为特征参数的神经网络诊断方法比以小波包分析为预处理器的神经网络诊断方法有 更高的故障识别率,可以准确、有效地识别滚动轴承的工作状态和故障类型。 展开更多
关键词 滚动轴承故障 EMD 经验模态分解 振动信号 内圈 能量特征 平稳 神经网络 预处理器 输入参数
在线阅读 下载PDF
基于Hilbert边际谱的滚动轴承故障诊断方法 被引量:79
7
作者 杨宇 于德介 程军圣 《振动与冲击》 EI CSCD 北大核心 2005年第1期70-72,共3页
Hilbert Huang变换是一种新的自适应信号处理方法,它适合于处理非线性和非平稳过程。通过对信号进 行Hilbert Huang变换,可以得到信号的Hilbert边际谱,它能精确地反映信号幅值随频率的变化规律。针对滚动轴承故 障振动信号的非平稳... Hilbert Huang变换是一种新的自适应信号处理方法,它适合于处理非线性和非平稳过程。通过对信号进 行Hilbert Huang变换,可以得到信号的Hilbert边际谱,它能精确地反映信号幅值随频率的变化规律。针对滚动轴承故 障振动信号的非平稳特征,提出了一种基于Hilbert边际谱的滚动轴承故障诊断方法。该方法在Hilbert边际谱的基础上 定义了特征能量函数,并以此作为滚动轴承的故障特征向量,建立M距离判别函数来识别滚动轴承的故障类型。对滚 动轴承的内圈、外圈故障信号的分析结果表明本文方法可以有效地提取滚动轴承故障特征。 展开更多
关键词 滚动轴承故障 内圈 HILBERT-HUANG变换 故障特征 振动信号 外圈 幅值 边际 向量 函数
在线阅读 下载PDF
基于HHT和有监督稀疏编码的滚动轴承故障状态识别方法 被引量:13
8
作者 俞啸 丁恩杰 +1 位作者 陈春旭 李力 《煤炭学报》 EI CAS CSCD 北大核心 2015年第11期2587-2595,共9页
为了实现对滚动轴承故障位置和损伤程度的准确定位,将类别判别信息引入到无监督的稀疏编码中,提出一种有监督稀疏编码(Supervised Sparse Coding,SSC)方法,建立基于希尔伯特黄变换(Hilbert-Huang Transform,HHT)和SSC的振动信号特征提... 为了实现对滚动轴承故障位置和损伤程度的准确定位,将类别判别信息引入到无监督的稀疏编码中,提出一种有监督稀疏编码(Supervised Sparse Coding,SSC)方法,建立基于希尔伯特黄变换(Hilbert-Huang Transform,HHT)和SSC的振动信号特征提取和故障状态精细分类模型。首先,通过HHT获取振动信号的边际谱,然后,利用SSC为边际谱信息建立统一的字典库,并完成对边际谱的稀疏表示,实现干扰信息的滤除和故障目标敏感特征的二次提取,最后,使用SSC得到的稀疏系数完成对支持向量基(Support Vector Machine,SVM)分类器的训练。采用SKF-6205-2RS轴承试验台数据对提出方法进行实验分析,使用HHT-SSC-SVM模型,驱动端轴承故障状态识别率为99.5%,风扇端轴承故障状态识别率为98.25%,与文中其他模型相比,在故障状态识别率上有所提高,并且表现出来较强的适应能力。 展开更多
关键词 希尔伯特黄变换 稀疏编码 支持向量机 特征提取 滚动轴承故障
在线阅读 下载PDF
SADBN及其在滚动轴承故障分类识别中的应用 被引量:18
9
作者 杨宇 罗鹏 +1 位作者 甘磊 程军圣 《振动与冲击》 EI CSCD 北大核心 2019年第15期11-16,26,共7页
传统的智能诊断方法一般都是基于"特征提取+分类器"模型,其核心在于特征值的提取以及分类器的设计。针对不同的诊断对象,通常需要根据先验知识提取不同的故障特征值,这必将给最终的诊断结果带来诊断误差;与此同时,传统的分类... 传统的智能诊断方法一般都是基于"特征提取+分类器"模型,其核心在于特征值的提取以及分类器的设计。针对不同的诊断对象,通常需要根据先验知识提取不同的故障特征值,这必将给最终的诊断结果带来诊断误差;与此同时,传统的分类器一般使用浅层模型,这使得其难以表征信号与装备运行状况之间复杂的映射关系。作为深度学习算法典型代表之一的深度信念网络(Deep Belief Network,DBN),可以直接从原始信号中提取特征并具有深度学习能力,因而已受到越来越多研究者的关注。但是DBN依然存在网络结构需要人为设定的缺陷,这也限制了DBN在工程实际中的应用。为解决DBN网络结构难以确定及如何提升其在工程实际应用中的诊断效率问题,提出了一种新的深度信念网络,即结构自适应深度信念网络(Structure Adaptive Deep Belief Network,SADBN)。与DBN相比,SADBN可以自适应地确定网络结构,有效提高诊断效率。对滚动轴承故障振动信号的分析结果表明了改进网络的有效性。 展开更多
关键词 深度学习 DBN 网络结构 SADBN 滚动轴承故障诊断
在线阅读 下载PDF
基于改进的自适应噪声消除和故障特征阶比谱的齿轮噪源干扰下变转速滚动轴承故障诊断 被引量:9
10
作者 王天杨 李建勇 程卫东 《振动与冲击》 EI CSCD 北大核心 2014年第18期7-13,共7页
变转速工作模式和齿轮噪源干扰是阻碍滚动轴承故障诊断的两个难题。虽然基于转速信号的角域重采样技术和基于参考信号的自适应噪声消除算法为这两个问题提供了可靠的解决路线,但是由于安装空间和成本的限制,转速信息和参考信号在实际工... 变转速工作模式和齿轮噪源干扰是阻碍滚动轴承故障诊断的两个难题。虽然基于转速信号的角域重采样技术和基于参考信号的自适应噪声消除算法为这两个问题提供了可靠的解决路线,但是由于安装空间和成本的限制,转速信息和参考信号在实际工程中往往难以获取。为解决这一难题,提出了一种不依靠上述辅助设备的滚动轴承故障诊断新算法。整个算法由五部分组成:(1)利用峰值啮合倍频趋势线构造参考信号对混合信号进行自适应滤波以削弱齿轮噪源对轴承故障共振频带获取的干扰;(2)利用谱峭度快速算法确定由轴承故障引起的高频共振所对应的中心频率,滤波带宽和对应的尺度并直接得到最能反映轴承故障的滤波包络;(3)利用短时傅里叶变换求得两次滤波后包络信号的包络时频谱并利用峰值搜索算法对瞬时故障特征频率趋势线进行提取;(4)提出基于采样频率重调的重采样算法,对谱峭度滤波结果进行故障阶比域重采样;(5)利用傅里叶变换求取重采样信号的故障特征阶比谱,并提出新的故障诊断策略对滚动轴承的运行状态进行判断。仿真算例和应用实例证明了该算法的有效性。 展开更多
关键词 滚动轴承故障诊断 变转速 齿轮噪源 瞬时啮合倍频 瞬时故障特征频率 故障特征阶比谱
在线阅读 下载PDF
基于改进的经验模态分解的滚动轴承故障诊断研究 被引量:4
11
作者 臧怀刚 李清志 +1 位作者 韩艳龙 王石云 《计量学报》 CSCD 北大核心 2013年第2期101-105,共5页
传统的时频分析方法不能有效地处理非平稳信号,经验模态分解(EMD)非常适合处理非平稳信号,但结果可能出现伪内禀模态函数(IMF)和不敏感内禀模态函数。针对EMD的不足,提出能量门限法和敏感IMF选择法相结合来识别真IMF和敏感IMF的... 传统的时频分析方法不能有效地处理非平稳信号,经验模态分解(EMD)非常适合处理非平稳信号,但结果可能出现伪内禀模态函数(IMF)和不敏感内禀模态函数。针对EMD的不足,提出能量门限法和敏感IMF选择法相结合来识别真IMF和敏感IMF的方法,对同时满足这两个条件的IMF作频谱变换,频谱图上可以清晰呈现故障特征信息。将改进后的EMD应用到滚动轴承故障诊断实例,证明了此方法的可行性和准确性。 展开更多
关键词 计量学 滚动轴承故障 经验模态分解 内禀模态函数 能量门限 敏感IMF
在线阅读 下载PDF
滚动轴承故障非接触多传感器声信号融合方法 被引量:4
12
作者 张颖 苏宪章 刘占生 《振动与冲击》 EI CSCD 北大核心 2012年第16期188-192,共5页
针对移动滚动轴承非接触声发射检测中,一个故障源信号可能被多个传感器采集,致使这些声信号包含故障信息不完整且存在重叠的问题,综合考虑声波传播理论、多传感器声信号时差关系、滚动轴承典型故障撞击频率等,建立滚动轴承故障非接触多... 针对移动滚动轴承非接触声发射检测中,一个故障源信号可能被多个传感器采集,致使这些声信号包含故障信息不完整且存在重叠的问题,综合考虑声波传播理论、多传感器声信号时差关系、滚动轴承典型故障撞击频率等,建立滚动轴承故障非接触多传感器声信号融合方法。建立滚动轴承故障非接触多传感器声发射检测试验台,分别采集移动滚动轴承滚动体、外圈和内圈故障声信号。采用融合方法对同声源信号进行处理,利用信号相似理论证明了融合信号与故障源信号的相似程度高于各传感器声信号。采用声发射累计撞击计数法对融合处理后的滚动轴承不同故障声信号进行分析。结果表明,该融合算法能有效地处理多传感器接收的同声源信号,可利用融合后信号进行准确的故障识别。 展开更多
关键词 滚动轴承故障 非接触声发射 多传感器 融合信号 相似理论 撞击计数
在线阅读 下载PDF
经验模式分解法(EMD)在滚动轴承故障诊断中的应用 被引量:6
13
作者 李嶷 熊国良 张龙 《华东交通大学学报》 2005年第1期135-138,共4页
在非平稳过程中,由于机械设备所受的应力比平稳过程中所受的应力更为复杂,因此,对设备的非平稳过程进行监测有利于发现早期故障,避免故障发展导致的严重破坏.本文将EMD(EmpiricalModeDecomposition)法应用于机械故障诊断当中.由于EMD法... 在非平稳过程中,由于机械设备所受的应力比平稳过程中所受的应力更为复杂,因此,对设备的非平稳过程进行监测有利于发现早期故障,避免故障发展导致的严重破坏.本文将EMD(EmpiricalModeDecomposition)法应用于机械故障诊断当中.由于EMD法具有自适应的特性,适宜于非平稳信号的分解.该方法应用于滚动轴承的故障振动信号分析中,结果表明该方法能够突出滚动轴承故障振动信号的故障特性,从而提高了滚动轴承故障诊断的准确性. 展开更多
关键词 机械故障诊断 法能 监测 适宜 发现 EMD 准确性 滚动轴承故障 振动信号分析 机械设备
在线阅读 下载PDF
倒频谱分析在滚动轴承故障监测中的运用 被引量:5
14
作者 陈侃 傅攀 谢辉 《四川兵工学报》 CAS 2008年第1期93-96,共4页
对原始滚动轴承的时域信号进行傅里叶变换,然后进行二次频谱变换即倒频谱分析.得出的结果能较好地反映出周期信号中的突变.通过对轴承内圈外圈的实验信号进行分析,结果表明,该信号分析方法能对轴承的大部分故障情况有效地监测.
关键词 例频率谱分析 故障诊断 滚动轴承故障诊断 二次频谱分析 倒谱
在线阅读 下载PDF
小波分析在滚动轴承故障诊断中的应用 被引量:4
15
作者 林凤涛 曹冲锋 《华东交通大学学报》 2004年第5期120-122,共3页
主要是针对故障滚动轴承的非平稳振动信号提出了一种应用小波函数的时—频分布分析方法,对故障特征进行提取,并借助Matlab语言编程实现对故障滚动轴承信号特征频率的仿真,与理论公式计算结果基本吻合.
关键词 诊断 吻合 信号特征 滚动轴承故障 MATLAB语言 滚动轴承 故障特征 振动信号 理论公式 小波分析
在线阅读 下载PDF
基于失衡样本特性过采样算法与SVM的滚动轴承故障诊断 被引量:20
16
作者 黄海松 魏建安 +1 位作者 任竹鹏 吴江进 《振动与冲击》 EI CSCD 北大核心 2020年第10期65-74,132,共11页
针对传统支持向量机(SVM)算法在滚动轴承故障诊断领域中,对失衡数据集效果不佳、对噪声敏感以及对本身参数依赖较大等缺点,提出一种基于样本特性的过采样算法(OABSC)。该算法利用改进凝聚层次聚类将故障样本分成多个簇;在每个簇中综合... 针对传统支持向量机(SVM)算法在滚动轴承故障诊断领域中,对失衡数据集效果不佳、对噪声敏感以及对本身参数依赖较大等缺点,提出一种基于样本特性的过采样算法(OABSC)。该算法利用改进凝聚层次聚类将故障样本分成多个簇;在每个簇中综合考虑样本距离、近邻域密度对"疑似噪声点"进行识别、剔除,并将剩余样本按信息量进行排序;紧接着,在每个簇中采用K^*-信息量近邻域(K^*INN)过采样算法合成新样本,以使得数据集平衡;模拟3种不同失衡比下的轴承故障情况,并采用粒子群算法优化了SVM分类器的参数。经试验证明:相比已有算法,OABSC算法能更好地适用于数据呈多簇分布且失衡的轴承故障诊断领域,拥有更高的G-mean值与AUC值以及更强的算法鲁棒性。 展开更多
关键词 改进凝聚层次聚类 样本特性 K^*-信息量近邻域(K^*INN)过采样 支持向量机(SVM) 滚动轴承故障诊断
在线阅读 下载PDF
基于特征融合与DBN的矿用通风机滚动轴承故障诊断 被引量:9
17
作者 郭秀才 吴妮 曹鑫 《工矿自动化》 北大核心 2021年第10期14-20,26,共8页
针对现有矿用通风机滚动轴承故障诊断方法仅提取时频分量特征和采用浅层网络结构,导致故障诊断精度不高的问题,提出了一种基于多域特征融合与深度置信网络(DBN)的矿用通风机滚动轴承故障诊断方法。该方法首先对轴承振动信号进行小波包... 针对现有矿用通风机滚动轴承故障诊断方法仅提取时频分量特征和采用浅层网络结构,导致故障诊断精度不高的问题,提出了一种基于多域特征融合与深度置信网络(DBN)的矿用通风机滚动轴承故障诊断方法。该方法首先对轴承振动信号进行小波包降噪处理,对降噪后的轴承振动信号进行时域特征、频域特征、IMF能量特征提取,得到相对全面的高维特征集;然后通过基于类内、类间标准差的特征筛选方法剔除对分类无效及效果不明显的特征,筛选出高效特征;最后采用核主成分分析(KPCA)对高维筛选特征进行降维融合,消除特征间冗余,将融合特征输入至DBN中完成故障诊断。实验结果表明,相比于基于特征单一和浅层网络的诊断方法,基于多域特征融合与DBN的矿用通风机滚动轴承故障诊断方法平均准确率最高,平均诊断时间最少,对于不同损伤故障数据表现出良好的稳定性和泛化能力。 展开更多
关键词 矿用通风机 滚动轴承故障诊断 多域特征融合 深度学习 特征敏感度 深度置信网络 DBN
在线阅读 下载PDF
基于LLE和LSSVM的滚动轴承故障诊断 被引量:1
18
作者 李力 李冕 陈法法 《煤矿机械》 2015年第7期308-310,共3页
针对滚动轴承故障特征混叠难以有效区分的问题,提出基于局部线性嵌入(LLE)与最小二乘支持向量机(LSSVM)结合的故障诊断方法。在由振动信号时域和频域统计指标构造的多维特征空间中,通过LLE算法对多维特征空间进行非线性降维处理,得到初... 针对滚动轴承故障特征混叠难以有效区分的问题,提出基于局部线性嵌入(LLE)与最小二乘支持向量机(LSSVM)结合的故障诊断方法。在由振动信号时域和频域统计指标构造的多维特征空间中,通过LLE算法对多维特征空间进行非线性降维处理,得到初始低维流形结构。将低维流形结构导入LSSVM中进行学习训练与故障辨识。应用于滚动轴承故障分析表明,该方法不仅对高维复杂的非线性故障特征具有良好的降维性能,而且故障识别率较之传统方法有明显提高,能够有效识别出高维特征空间的非线性故障特征。 展开更多
关键词 局部线性嵌入(LLE) 最小二乘支持向量机(LSSVM) 滚动轴承故障 诊断
在线阅读 下载PDF
基于小波包-SVD和IPSO-BP的滚动轴承故障诊断 被引量:6
19
作者 任学平 霍灿鹏 《煤矿机械》 2021年第2期148-151,共4页
针对滚动轴承振动信号的非平稳性和非线性特点以及BP神经网络结构参数差等因素导致滚动轴承故障识别准确率低的问题,提出一种基于小波包结合奇异值分解(SVD)和改进粒子群算法(IPSO)优化BP神经网络的滚动轴承故障诊断方法。首先通过小波... 针对滚动轴承振动信号的非平稳性和非线性特点以及BP神经网络结构参数差等因素导致滚动轴承故障识别准确率低的问题,提出一种基于小波包结合奇异值分解(SVD)和改进粒子群算法(IPSO)优化BP神经网络的滚动轴承故障诊断方法。首先通过小波包对振动信号进行分解与重构,得到不同频段的信号之后利用SVD提出有效的故障特征向量,输入到BP神经网络中进行测试。考虑到BP神经网络结构参数差等因素,使用IPSO对BP神经网络进行优化,最后测试得出结果。对比实验模拟和现场数据验证表明,基于小波包-SVD和IPSO-BP的滚动轴承故障诊断准确度大大提高。 展开更多
关键词 小波包 SVD IPSO BP神经网络 滚动轴承故障诊断
在线阅读 下载PDF
改良GoogLeNet的电机滚动轴承故障诊断 被引量:1
20
作者 任爽 田振川 +2 位作者 林光辉 杨凯 商继财 《吉林大学学报(信息科学版)》 CAS 2022年第3期371-378,共8页
针对电机滚动轴承信号特征人工提取困难、故障分类效果差的问题,利用传统GoogLeNet模型单元与稠密连接思想结合,提出一种改良的GoogLeNet卷积神经网络结构。将提出的改良模型应用于电机滚动轴承的故障诊断试验,对原数据分组处理并贴上... 针对电机滚动轴承信号特征人工提取困难、故障分类效果差的问题,利用传统GoogLeNet模型单元与稠密连接思想结合,提出一种改良的GoogLeNet卷积神经网络结构。将提出的改良模型应用于电机滚动轴承的故障诊断试验,对原数据分组处理并贴上标签后,直接输入到改良模型中进行训练,最后将测试集输入到训练好的模型中,测试其分类准确率。由于诊断过程不需要进行人工特征提取,从而避免了人工提取故障特征时的困难和带来的误差,大大简化了故障识别过程,证明了改良GoogLeNet模型在故障诊断中的可行性。将提出的模型与传统GoogLeNet模型和其他典型模型做对比,结果表明,改良GoogLeNet卷积神经网络模型具有精确度高、特征提取能力强、收敛速度快、表现稳定的特点。 展开更多
关键词 深度学习 电机滚动轴承故障诊断 卷积神经网络 GoogLeNet网络 稠密连接
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部