期刊文献+
共找到452篇文章
< 1 2 23 >
每页显示 20 50 100
基于RBM-CNN模型的滚动轴承剩余使用寿命预测 被引量:3
1
作者 张永超 杨海昆 +2 位作者 刘嵩寿 赵帅 陈庆光 《轴承》 北大核心 2025年第5期96-101,共6页
针对滚动轴承剩余使用寿命预测时存在特征提取困难及预测准确性较差的问题,提出一种基于受限玻尔兹曼机(RBM)与卷积神经网络(CNN)的滚动轴承剩余使用寿命预测模型。首先,采用快速傅里叶变换对轴承原始振动信号进行频域变换构建幅值谱;其... 针对滚动轴承剩余使用寿命预测时存在特征提取困难及预测准确性较差的问题,提出一种基于受限玻尔兹曼机(RBM)与卷积神经网络(CNN)的滚动轴承剩余使用寿命预测模型。首先,采用快速傅里叶变换对轴承原始振动信号进行频域变换构建幅值谱;其次,通过RBM挖掘幅值谱中的深度全局特征;然后,通过建立早期故障阈值点划分退化阶段;最后,利用深度CNN对轴承剩余使用寿命进行预测。使用辛辛那提大学轴承数据集对所提方法进行验证,并与其他深度学习方法进行对比,结果表明RBM-CNN模型的均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)最小,预测准确度最高,达到90.05%,验证了RBM-CNN模型在滚动轴承剩余使用寿命预测中的优越性。 展开更多
关键词 滚动轴承 使用寿命 寿命预测 玻尔兹曼机 卷积神经网络
在线阅读 下载PDF
Kriging模型在滚动轴承剩余使用寿命预测中的应用 被引量:1
2
作者 刘吉文 秦东晨 +1 位作者 袁峰 陈江义 《轴承》 北大核心 2025年第3期104-110,共7页
针对常用优化算法对滚动轴承剩余使用寿命(RUL)预测模型进行超参数优化时易陷入局部最优的问题,提出了一种基于Kriging代理模型和长短期记忆网络(LSTM)的滚动轴承剩余使用寿命预测模型。首先,改进小波阈值函数对轴承原始振动信号进行降... 针对常用优化算法对滚动轴承剩余使用寿命(RUL)预测模型进行超参数优化时易陷入局部最优的问题,提出了一种基于Kriging代理模型和长短期记忆网络(LSTM)的滚动轴承剩余使用寿命预测模型。首先,改进小波阈值函数对轴承原始振动信号进行降噪处理;其次,通过自适应融合方法构建轴承健康指标(HI)曲线并作为预测模型的输入;然后,搭建Kriging代理模型,以寿命预测结果的均方根误差(RMSE)值为优化目标,LSTM模型隐藏层单元数和Dropout层丢弃率为优化变量对LSTM模型寻优得到最优参数组合;最后,用超参数优化后的LSTM模型进行滚动轴承的RUL预测。基于西安交通大学轴承数据集,与传统LSTM、反向传播(BP)神经网络和多层感知机(MLP)的预测结果进行了对比,结果表明所提模型的预测曲线能更好地贴近轴承真实退化趋势,预测结果更加接近轴承真实寿命,验证了该模型的有效性。 展开更多
关键词 滚动轴承 剩余使用寿命 寿命预测 长短期记忆网络 Kriging代理模型
在线阅读 下载PDF
基于多维时序融合特征的滚动轴承剩余使用寿命预测 被引量:1
3
作者 万忠义 吴开平 +2 位作者 徐彬 王琮煜 周江 《制造技术与机床》 北大核心 2025年第2期9-16,共8页
在滚动轴承退化失效前预测其剩余使用寿命(remaining useful life,RUL),对保障设备安全运行和减少经济损失具有重要意义。针对滚动轴承RUL的预测,构建了一种基于多维时序融合特征的预测流程。在该流程中,首先,采用一维卷积神经网络((one... 在滚动轴承退化失效前预测其剩余使用寿命(remaining useful life,RUL),对保障设备安全运行和减少经济损失具有重要意义。针对滚动轴承RUL的预测,构建了一种基于多维时序融合特征的预测流程。在该流程中,首先,采用一维卷积神经网络((one-dimensional convolutional neural network,1DCNN))和时序卷积网络(temporal convolutional network,TCN)自动提取振动信号的相关特征;其次,在时域和特征域中交替使用多层感知器,构建多维时序特征融合模型,并将历史时刻和当前时刻的特征一起作为模型输入,用于RUL的预测。试验结果表明,文章方法RUL预测曲线均方根误差和平均绝对误差的平均值分别降低至0.263和0.227,失效点预测绝对误差的平均值提高至10.67%。与深度卷积神经网络和长短时记忆网络相比,文章方法在RUL预测曲线的拟合程度和滚动轴承失效点的预测方面均具有明显的优越性。可见,构建的滚动轴承RUL预测流程能较为准确地预测其RUL,具有一定的实用性。 展开更多
关键词 滚动轴承 剩余使用寿命预测 特征提取 多维时序特征 深度学习
在线阅读 下载PDF
基于CNN-Transformer网络融合时频域的滚动轴承剩余使用寿命预测
4
作者 张发振 张清华 +3 位作者 秦宾宾 朱冠华 黄权斯 刘学斌 《机床与液压》 北大核心 2025年第14期7-14,共8页
针对现有深度学习滚动轴承预测方法存在的预测准确度不足、学习长期依赖关系困难以及特征信息表达单一等问题,提出一种基于CNN-Transformer并行网络结合交叉注意力机制融合时域和频域信息的轴承剩余使用寿命预测方法。利用快速傅里叶变... 针对现有深度学习滚动轴承预测方法存在的预测准确度不足、学习长期依赖关系困难以及特征信息表达单一等问题,提出一种基于CNN-Transformer并行网络结合交叉注意力机制融合时域和频域信息的轴承剩余使用寿命预测方法。利用快速傅里叶变换(FFT)提取输入信号的频域特征,使用因果卷积运算提取时频域局部特征,并通过Transformer编码层增强模型对特征的表达能力,最终通过交叉注意力机制融合两种特征。此方法有效利用了时域和频域信息的互补性,显著提升了滚动轴承RUL预测的性能,并在IEEE PHM 2012数据集上进行了验证。结果表明:相比CT、CLSTM、CNN和LSTM预测方法,所提方法的预测结果最优,相邻预测结果的波动性更小。其中,平均绝对误差(MAE)和均方根误差(RMSE)均为最低。在工况1的3号轴承验证中,所提方法的RUL预测MAE值分别比其他4种模型降低了15.0%、20.6%、44.1%和56.4%;在工况2的4号轴承验证中,RUL预测RMSE值分别降低了41.1%、50.9%、72.4%和73.1%,表明所提滚动轴承剩余使用寿命预测方法具有更高的精度。 展开更多
关键词 剩余使用寿命 轴承 因果卷积神经网络 CNN-Transformer 交叉注意力
在线阅读 下载PDF
基于Pyraformer的滚动轴承剩余使用寿命预测方法
5
作者 马凤敏 居文军 王浩磊 《计算机应用》 北大核心 2025年第S1期354-359,共6页
针对传统滚动轴承剩余使用寿命(RUL)预测方法在处理高维状态监测数据时难以提取有效退化信息和捕获不同范围时间相关性的问题,提出一种基于Pyraformer的滚动轴承RUL预测方法。首先,采用时频特征提取技术对轴承原始振动信号进行处理,以... 针对传统滚动轴承剩余使用寿命(RUL)预测方法在处理高维状态监测数据时难以提取有效退化信息和捕获不同范围时间相关性的问题,提出一种基于Pyraformer的滚动轴承RUL预测方法。首先,采用时频特征提取技术对轴承原始振动信号进行处理,以构建多重特征集;然后,基于Pyraformer建立轴承RUL预测模型,以捕获多重特征集与滚动轴承RUL预测之间的复杂关系;同时,提出一种基于金字塔特征的RUL预测模块,引入威布尔(Weibull)分布损失函数加快模型的收敛,并采用卡尔曼滤波对RUL预测曲线进行平滑和降噪处理;最后,在2012年故障预测与健康管理挑战赛(PHM2012)数据集上把所提方法与其他RUL预测模型进行对比实验,结果表明所提方法的预测精度相较于传统Transformer寿命预测方法在平均绝对误差(MAE)和均方根误差(RMSE)上分别降低了23%和30%,验证了该方法能有效提高RUL预测准确度,具有一定的实用性。 展开更多
关键词 剩余使用寿命 时频特征提取 Pyraformer 威布尔分布 卡尔曼滤波
在线阅读 下载PDF
基于MRSDAE-KPCA结合Bi-LST的滚动轴承剩余使用寿命预测 被引量:1
6
作者 古莹奎 陈家芳 石昌武 《噪声与振动控制》 CSCD 北大核心 2024年第3期95-100,145,共7页
针对现有滚动轴承剩余使用寿命预测方法在提取数据特征时没有充分考虑数据的内部分布,且在构建健康因子时还需要专家经验进行人工提取等问题,提出一种基于流形正则化堆栈去噪自编码器、核主成分分析并结合双向长短时记忆网络的滚动轴承... 针对现有滚动轴承剩余使用寿命预测方法在提取数据特征时没有充分考虑数据的内部分布,且在构建健康因子时还需要专家经验进行人工提取等问题,提出一种基于流形正则化堆栈去噪自编码器、核主成分分析并结合双向长短时记忆网络的滚动轴承剩余使用寿命预测方法。首先采用无监督的堆栈去噪自编码器网络对原始振动数据进行深层特征提取,并使用核主成分分析法进一步降维,以提高健康因子的指标稳定性;然后在堆栈去噪自编码器中加入流形正则化,最大程度保留编码器隐藏层内部的数据分布结构,提高模型提取数据特征的有效性。最后使用双向长短时记忆网络预测轴承的剩余使用寿命,并采用AdaMax优化算法对网络模型的超参数进行自适应寻优。分析结果表明,提出的滚动轴承剩余使用寿命预测方法具有更高的精度。 展开更多
关键词 故障诊断 滚动轴承 剩余使用寿命预测 健康因子 流形正则化堆栈去噪自编码器 双向长短时记忆网络
在线阅读 下载PDF
基于优化VMD-GRU的滚动轴承剩余使用寿命预测 被引量:2
7
作者 郗涛 王锴 王莉静 《中国工程机械学报》 北大核心 2024年第1期101-106,共6页
为了提高滚动轴承剩余使用寿命(RUL)的预测精度,提出了一种变分模态分解(VMD)和门控循环神经网络(GRU)融合算法的滚动轴承RUL预测模型VMD-GRU。首先,该模型通过阿基米德优化算法(AOA)优化的VMD算法对原始振动信号进行分解;然后,利用最... 为了提高滚动轴承剩余使用寿命(RUL)的预测精度,提出了一种变分模态分解(VMD)和门控循环神经网络(GRU)融合算法的滚动轴承RUL预测模型VMD-GRU。首先,该模型通过阿基米德优化算法(AOA)优化的VMD算法对原始振动信号进行分解;然后,利用最小包络熵准则选择最佳模态分量进行退化特征提取;再通过核主成分分析进行特征降维;最后,为保证模型准确率,通过鹈鹕优化算法(POA)优化GRU中的超参数,并根据不同故障类型建立GRU剩余寿命预测模型。使用XJTU-SY标准数据集进行剩余寿命预测验证,实验结果表明:与传统未结合故障类型提取退化特征和建立预测模型方法相比,VMD-GRU模型均方根误差和平均绝对误差分别降低了26.28%和27.17%。 展开更多
关键词 滚动轴承 剩余寿命预测 变分模态分解(VMD) 门控循环神经网络(GRU) 阿基米德优化算法(AOA) 鹈鹕优化算法(POA)
在线阅读 下载PDF
基于迁移学习的滚动轴承剩余使用寿命预测 被引量:3
8
作者 姜苗 向阳 魏建红 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第4期665-673,共9页
为解决轴承剩余使用寿命预测模型预测泛化能力低,不能准确预测出未训练轴承剩余使用寿命的问题,本文提出了一种迁移轴承状态知识的剩余使用寿命的方法。利用计算时域、频域特征以及模糊熵作为预测特征,使用“3σ”准则将轴承全寿命过程... 为解决轴承剩余使用寿命预测模型预测泛化能力低,不能准确预测出未训练轴承剩余使用寿命的问题,本文提出了一种迁移轴承状态知识的剩余使用寿命的方法。利用计算时域、频域特征以及模糊熵作为预测特征,使用“3σ”准则将轴承全寿命过程划分为正常阶段、退化阶段,以实现对退化阶段轴承剩余使用寿命的预测。构建基于门控循环单元的轴承剩余使用寿命预测模型,并使用某一轴承的全寿命周期数据进行训练,使模型学习到新轴承的状态信息。研究表明:相较于未使用迁移学习的方法,其预测所有轴承的轴承剩余使用寿命平均均方根误差减小了52.53%,平均百分比误差减少了68.87%。本文提出的方法可以有效、准确地预测出轴承的轴承剩余使用寿命。 展开更多
关键词 门控循环单元 剩余使用寿命预测 滚动轴承 迁移学习 预训练 模糊熵 退化阶段 特征融合
在线阅读 下载PDF
正交约束域适应的跨工况滚动轴承剩余使用寿命预测方法
9
作者 韩延 林志超 +3 位作者 黄庆卿 向敏 文瑞 张焱 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第3期1043-1050,共8页
针对跨工况轴承剩余使用寿命(RUL)预测模型的决策边界不明显、特征可辨识性低的问题,该文提出一种正交约束的最大分类器差异方法(MCD_OC)。首先,将采集的轴承原始振动信号进行快速傅里叶变换,得到振动信号的频域信号作为模型的输入;然后... 针对跨工况轴承剩余使用寿命(RUL)预测模型的决策边界不明显、特征可辨识性低的问题,该文提出一种正交约束的最大分类器差异方法(MCD_OC)。首先,将采集的轴承原始振动信号进行快速傅里叶变换,得到振动信号的频域信号作为模型的输入;然后,通过卷积神经网络(CNN)和门控循环神经网络(GRU)提取轴承信号的深层时空特征,利用最大分类器差异将源域和目标域特征对齐,并对目标域轴承深层特征进行正交约束,增大无标签目标域样本特征之间的可辨识性;最后,基于轴承寿命数据集开展了跨工况轴承寿命预测对比实验,对该文所提方法进行评估,并在多组实验中取得最优结果。 展开更多
关键词 滚动轴承 剩余使用寿命 正交约束 最大分类器差异
在线阅读 下载PDF
基于自注意力CNN-BiLSTM的滚动轴承剩余使用寿命预测 被引量:8
10
作者 惠憬明 王健 +2 位作者 吴双 黄永明 王梓齐 《轴承》 北大核心 2024年第3期92-98,共7页
针对现有滚动轴承剩余使用寿命(RUL)预测方法特征提取能力单一,无法充分利用数据中蕴含的时空信息等问题,提出了一种基于自注意力卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的RUL预测方法。将振动信号的不同时域指标输入改进的自... 针对现有滚动轴承剩余使用寿命(RUL)预测方法特征提取能力单一,无法充分利用数据中蕴含的时空信息等问题,提出了一种基于自注意力卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的RUL预测方法。将振动信号的不同时域指标输入改进的自注意力CNN模块,提取不同指标间的空间特征信息并进行自注意力加权以强化特征提取效果,然后通过BiLSTM层提取时序数据中的退化特征信息并经过全连接层后输出轴承的RUL预测值。使用FEMTO-ST滚动轴承数据集进行验证的结果表明,相比CNN,BiLSTM和CNN-BiLSTM模型,自注意力CNN-BiLSTM模型的RUL预测误差更低,性能评价指标更好,CNN与BiLSTM的融合以及自注意力机制的应用使模型的预测精度提高且更倾向于进行超前预测,有利于开展预测性维修。 展开更多
关键词 滚动轴承 剩余使用寿命 寿命预测 深度学习 卷积神经网络 双向长短期记忆网络 自注意力
在线阅读 下载PDF
基于TET与DSRNet-AttBiLSTM的滚动轴承剩余使用寿命预测 被引量:1
11
作者 周玉国 张金超 +2 位作者 孙伊萍 于春风 周立俭 《振动与冲击》 EI CSCD 北大核心 2024年第19期163-173,共11页
为了在滚动轴承剩余使用寿命(remaining useful life,RUL)预测中,能够准确地提取轴承的退化特征并进行有效的RUL预测。提出一种基于暂态提取变换(transient extracting transform,TET)与DSRNet-AttBiLSTM的滚动轴承RUL预测方法。首先,... 为了在滚动轴承剩余使用寿命(remaining useful life,RUL)预测中,能够准确地提取轴承的退化特征并进行有效的RUL预测。提出一种基于暂态提取变换(transient extracting transform,TET)与DSRNet-AttBiLSTM的滚动轴承RUL预测方法。首先,对原始振动信号分段重组后进行TET得到时频图,使用双线性插值对时频图进行降维,将降维后的时频图进行通道拼接得到轴承的时频图像化特征。其次,为了准确且有效地提取滚动轴承的退化特征,构建了包含深度可分离卷积和空间通道注意力的SConv和DConv基础模块,以此为基础建立了DSRNet来提取空间与通道两个维度下的轴承退化特征。再次,为了使双向长短时间记忆(bidirectional long short-term memory,BiLSTM)网络在学习时更加关注具有更重要信息的输入特征,在特征输入端构建了注意力层,并与BiLSTM相结合组成AttBiLSTM预测模块进行HI的计算。最后,使用线性回归拟合来预测滚动轴承的RUL。在PHM2012数据集与XJTU-SY数据集上试验的结果表明此方法能有效预测滚动轴承的RUL。 展开更多
关键词 滚动轴承 剩余使用寿命(RUL) 注意力机制 特征提取
在线阅读 下载PDF
基于MCEA-KPCA和组合SVR的滚动轴承剩余使用寿命预测 被引量:22
12
作者 康守强 叶立强 +2 位作者 王玉静 谢金宝 Mikulovich V I 《电子测量与仪器学报》 CSCD 北大核心 2017年第9期1365-1371,共7页
为了准确预测滚动轴承的剩余使用寿命(RUL),提出一种多评价标准有效性分析(MCEA)、核主成分分析(KPCA)和组合支持向量回归(SVR)相结合的滚动轴承RUL预测方法。该方法对提取的特征计算每个评价标准的有效性得分,自适应地确定每个评价标... 为了准确预测滚动轴承的剩余使用寿命(RUL),提出一种多评价标准有效性分析(MCEA)、核主成分分析(KPCA)和组合支持向量回归(SVR)相结合的滚动轴承RUL预测方法。该方法对提取的特征计算每个评价标准的有效性得分,自适应地确定每个评价标准的权重,筛选出有效性总得分高于其整体平均值的特征,进一步利用KPCA去除已筛选特征之间的信息冗余,建立约简后的特征矩阵。将多个轴承约简后的特征分别作为SVR的输入,当前使用寿命与全寿命的比值p即RUL作为输出,建立多个SVR模型,并采用自适应的方法确定各模型的权重,最终构建组合SVR预测模型。最后,对与训练不同的轴承进行测试,将约简后特征输入到组合SVR预测模型中,预测轴承的p值,实验结果表明,所提方法可准确地对滚动轴承进行RUL预测。 展开更多
关键词 滚动轴承 有效性分析 特征约简 剩余使用寿命预测
在线阅读 下载PDF
结合CNN和LSTM的滚动轴承剩余使用寿命预测方法 被引量:44
13
作者 王玉静 李少鹏 +2 位作者 康守强 谢金宝 MIKULOVICH V I 《振动.测试与诊断》 EI CSCD 北大核心 2021年第3期439-446,617,共9页
针对滚动轴承存在性能退化渐变故障和突发故障两种模式下的剩余使用寿命(remaining useful life,简称RUL)预测困难的问题,提出一种结合卷积神经网络(convolution neural networks,简称CNN)和长短时记忆(long short term memory,简称LSTM... 针对滚动轴承存在性能退化渐变故障和突发故障两种模式下的剩余使用寿命(remaining useful life,简称RUL)预测困难的问题,提出一种结合卷积神经网络(convolution neural networks,简称CNN)和长短时记忆(long short term memory,简称LSTM)神经网络的滚动轴承RUL预测方法。首先,对滚动轴承原始振动信号作快速傅里叶变换(fast Fourier transform,简称FFT);其次,将预处理所得到的频域幅值信号进行归一化处理后,将其作为CNN的输入,并利用CNN自适应提取局部内在有用信息,学习并挖掘深层特征,避免传统算法需要专家大量经验的弊端;然后,再将深层特征输入到LSTM网络中,构建趋势性量化健康指标,同时确定失效阈值;最后,运用移动平均法进行平滑处理,消除局部振荡,再利用多项式曲线拟合,预测未来失效时刻,实现滚动轴承RUL预测。实验结果表明,所提方法构建的趋势性量化健康指标在两种故障模式下都具有良好的单调趋势性,预测结果能够较好地接近真实寿命值。 展开更多
关键词 滚动轴承 卷积神经网络 长短时记忆神经网络 趋势性量化健康指标 剩余使用寿命预测
在线阅读 下载PDF
基于EWM和SVR的滚动轴承剩余使用寿命预测方法 被引量:4
14
作者 古莹奎 汪源金 石昌武 《中国安全科学学报》 CAS CSCD 北大核心 2023年第9期49-55,共7页
为解决滚动轴承有限全寿命监测数据情况下退化特征分布失真导致轴承剩余使用寿命(RUL)预测精度不高的问题,提出一种基于熵权法(EWM)和支持向量回归(SVR)的轴承RUL预测方法。首先,提取振动信号的时域和频域特征,并对特征进行对数变换;然... 为解决滚动轴承有限全寿命监测数据情况下退化特征分布失真导致轴承剩余使用寿命(RUL)预测精度不高的问题,提出一种基于熵权法(EWM)和支持向量回归(SVR)的轴承RUL预测方法。首先,提取振动信号的时域和频域特征,并对特征进行对数变换;然后,通过EWM确定指标权重实现特征选择;最后,采用麻雀搜索算法(SSA)优化SVR模型,以主成分分析(PCA)降维后的低维特征作为优化后的SVR模型的输入,RUL占比作为输出,从而实现轴承剩余寿命的预测。结果表明:在有限监测数据情况下,与其他方法相比,所提方法不但预测性能更加稳定,而且预测的绝对误差平均降低19.51%,均方误差(MSE)平均降低17.73%。 展开更多
关键词 熵权法(EWM) 支持向量回归(SVR) 滚动轴承 剩余使用寿命(RUL)预测 麻雀搜索算法(SSA)
在线阅读 下载PDF
滚动轴承剩余使用寿命预测综述 被引量:19
15
作者 张金豹 邹天刚 +3 位作者 王敏 桂鹏 戈红霞 王成 《机械科学与技术》 CSCD 北大核心 2023年第1期1-23,共23页
滚动轴承作为旋转机械的关键零部件,其剩余使用寿命(RUL)预测对生产维修和人身安全具有重要意义。由于滚动轴承复杂多变的工作环境,使得同工况的参考样本少而变工况的参考样本较多,具有不平衡、不完整、无标签及噪声干扰等特性,增加了... 滚动轴承作为旋转机械的关键零部件,其剩余使用寿命(RUL)预测对生产维修和人身安全具有重要意义。由于滚动轴承复杂多变的工作环境,使得同工况的参考样本少而变工况的参考样本较多,具有不平衡、不完整、无标签及噪声干扰等特性,增加了滚动轴承RUL预测的困难。随着大数据时代的来临和人工智能的发展,滚动轴承RUL预测方法也变得更加丰富。因此,在故障预测与健康管理(PHM)的框架下,对滚动轴承失效模式和故障数据特点进行阐述,对故障特征提取、降维和融合方法以及得到的性能退化指标分别进行了分类和对比分析。结合数据驱动算法,对滚动轴承RUL的预测方法、模型选择和评估标准进行了梳理和对比。最后对滚动轴承RUL预测未来的发展趋势进行了展望。 展开更多
关键词 滚动轴承 剩余使用寿命 性能退化指标 数据驱动算法 预测方法
在线阅读 下载PDF
结合LSTM和Self‑Attention的滚动轴承剩余使用寿命预测方法 被引量:8
16
作者 黄宇 冯坤 +3 位作者 高俊峰 李周正 江志农 高金吉 《振动工程学报》 EI CSCD 北大核心 2023年第6期1744-1753,共10页
为了构建准确表征滚动轴承退化过程的趋势性健康度指标,提高滚动轴承剩余使用寿命(Remaining Useful Life,RUL)的预测精度,提出了一种结合长短期记忆(Long‑Short Term Memory,LSTM)和自注意力(Self‑Attention)机制的神经网络模型(LSTM‑... 为了构建准确表征滚动轴承退化过程的趋势性健康度指标,提高滚动轴承剩余使用寿命(Remaining Useful Life,RUL)的预测精度,提出了一种结合长短期记忆(Long‑Short Term Memory,LSTM)和自注意力(Self‑Attention)机制的神经网络模型(LSTM‑SA)用于滚动轴承RUL预测。利用包络解调获得原始信号的包络谱,再将包络谱分段并计算对应频段的皮尔逊相关系数,得到具有单调性和趋势性的退化特征;将退化特征归一化处理后作为LSTM‑SA模型的输入,并利用LSTM自适应提取退化特征时间上的内部相关性以及Self‑Attention对关键信息的筛选,消除无用信息的干扰,挖掘深层次特征,构建健康度指标并得到退化曲线;确定失效阈值,利用最小二乘法拟合退化曲线,预测寿命失效点,实现滚动轴承的RUL预测。在PHM2012数据集上的实验结果表明,所提出的方法相比于其他文献,平均绝对误差分别降低了43.18%,62.57%和59.44%,平均得分分别提高了10.87%,45.71%和34.21%;在工程实际数据中的实验结果表明,所提出方法的平均预测误差分别比Standard‑RNN和CNN方法降低了39.58%和74.86%。 展开更多
关键词 剩余使用寿命预测 滚动轴承 长短期记忆网络 自注意力机制 包络谱特征
在线阅读 下载PDF
基于Transformer模型的滚动轴承剩余使用寿命预测方法 被引量:40
17
作者 周哲韬 刘路 +1 位作者 宋晓 陈凯 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第2期430-443,共14页
准确的滚动轴承剩余使用寿命(RUL)预测对保证机械安全运行和减小维修损失起着至关重要的作用。为提高滚动轴承RUL预测准确率,提出一种基于Transformer模型的轴承RUL预测方法,充分利用其自注意力机制与编码器-解码器结构的优势,解决轴承... 准确的滚动轴承剩余使用寿命(RUL)预测对保证机械安全运行和减小维修损失起着至关重要的作用。为提高滚动轴承RUL预测准确率,提出一种基于Transformer模型的轴承RUL预测方法,充分利用其自注意力机制与编码器-解码器结构的优势,解决轴承RUL预测中序列过长而导致的记忆力退化问题,挖掘出输入特征与轴承RUL之间复杂映射关系。同时,采用三角函数变换与累积变换来修正输入特征的单调性与趋势性,使其能更好地表征滚动轴承的退化过程。在PHM2012数据集上的实验结果表明:所提方法相比于对比方法平均绝对误差分别降低了9.25%、28.63%、34.14%,平均得分分别提高了2.78%、19.79%、29.38%;在XJTU-SY数据集上的实验结果表明,所提方法相比于对比方法均方根误差降低了17.4%,平均得分提高了18.6%,进一步证明了其可行性与优越性。 展开更多
关键词 滚动轴承 剩余使用寿命预测 Transformer模型 自注意力机制 累积变换
在线阅读 下载PDF
基于SKF-KF-Bayes的滚动轴承剩余使用寿命预测方法 被引量:10
18
作者 许艳雷 邱明 +2 位作者 李军星 刘璐 牛凯岑 《振动与冲击》 EI CSCD 北大核心 2021年第19期26-31,40,共7页
准确预测滚动轴承的剩余使用寿命(remaining useful life,RUL)对机械设备安全可靠运行有着至关重要的作用,针对滚动轴承寿命预测中存在的未能准确区分滚动轴承退化阶段与如何有效地利用历史退化数据与实时监测数据等问题,提出了一种SKF(... 准确预测滚动轴承的剩余使用寿命(remaining useful life,RUL)对机械设备安全可靠运行有着至关重要的作用,针对滚动轴承寿命预测中存在的未能准确区分滚动轴承退化阶段与如何有效地利用历史退化数据与实时监测数据等问题,提出了一种SKF(switching Kalman filters)、KF(Kalman filters)和Bayes结合的滚动轴承性能退化建模与剩余使用寿命预测方法。结合滚动轴承振动信号性能监测数据,采用SKF方法识别出轴承性能退化的变点;利用随机效应指数退化模型描述轴承性能退化过程,结合同类轴承性能数据给出模型未知参数极大似然估计;利用KF单步预测对当前时刻监测数据进行修正,基于Bayes方法对模型中的随机参数进行实时更新,推导出轴承剩余使用寿命分布模型,计算滚动轴承剩余使用寿命;通过对滚动轴承试验数据分析,验证了该方法的适用性和有效性。 展开更多
关键词 滚动轴承 剩余使用寿命(RUL)预测 SKF识别 KF单步预测 Bayes更新
在线阅读 下载PDF
基于空洞CNN和LSTM的滚动轴承剩余使用寿命预测 被引量:6
19
作者 刘昕宇 姜长泓 +1 位作者 刘一铮 王其铭 《现代制造工程》 CSCD 北大核心 2023年第4期130-135,102,共7页
针对滚动轴承剩余使用寿命预测方法中出现的退化阶段起始点识别困难和退化特征难以提取的问题,提出了一种基于空洞卷积神经网络(Convolutional Neural Network,CNN)和长短时记忆(Long and Short-Term Memory,LSTM)网络的滚动轴承剩余使... 针对滚动轴承剩余使用寿命预测方法中出现的退化阶段起始点识别困难和退化特征难以提取的问题,提出了一种基于空洞卷积神经网络(Convolutional Neural Network,CNN)和长短时记忆(Long and Short-Term Memory,LSTM)网络的滚动轴承剩余使用寿命预测方法。首先,对归一化幅值后的滚动轴承数据集构建了二次函数退化标签,避免滚动轴承退化阶段起始点的识别。其次,采用空洞CNN提取滚动轴承的退化特征,将提取的退化特征输入到LSTM网络中进行学习,并通过全连接层来进行退化特征到剩余使用寿命标签的映射,从而实现滚动轴承的剩余使用寿命预测。最后,通过PHM2012滚动轴承数据集对所提出的滚动轴承剩余使用寿命预测方法的有效性进行了验证。试验结果表明,所提方法具有较好的预测效果。 展开更多
关键词 滚动轴承 剩余使用寿命预测 长短时记忆网络 空洞卷积神经网络
在线阅读 下载PDF
基于深度迁移学习的滚动轴承剩余使用寿命预测 被引量:8
20
作者 汪立雄 王志刚 +1 位作者 徐增丙 林辉 《制造技术与机床》 北大核心 2020年第12期130-134,137,共6页
针对轴承剩余使用寿命(RUL)预测模型训练样本少导致预测精度低的问题,提出一种基于深度迁移学习的滚动轴承剩余使用寿命预测方法。首先利用深度信念网络(DBN)和自组织映射神经网络(SOM)直接对原始振动信号构建轴承健康因子(HI),然后以... 针对轴承剩余使用寿命(RUL)预测模型训练样本少导致预测精度低的问题,提出一种基于深度迁移学习的滚动轴承剩余使用寿命预测方法。首先利用深度信念网络(DBN)和自组织映射神经网络(SOM)直接对原始振动信号构建轴承健康因子(HI),然后以长短时记忆网络(LSTM)模型为基础,通过共享隐含层的迁移方法训练RUL预测模型,最后利用LSTM-DT进行RUL预测。实验证明,构建HI能够精确反映轴承的健康状态,LSTM-DT算法有效提高RUL预测精度。 展开更多
关键词 剩余使用寿命预测 深度信念网络 自组织映射神经网络 轴承健康因子 长短时记忆网络 共享隐含层迁移
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部