为保证燃料电池系统在负载工况变化条件下仍能无扰动地运行在最大效率点,提出一种基于遗忘因子递推最小二乘(forgetting factor recursive least square,FFRLS)在线辨识和Super-Twisting滑模算法的燃料电池系统实时最大效率跟踪方法。...为保证燃料电池系统在负载工况变化条件下仍能无扰动地运行在最大效率点,提出一种基于遗忘因子递推最小二乘(forgetting factor recursive least square,FFRLS)在线辨识和Super-Twisting滑模算法的燃料电池系统实时最大效率跟踪方法。该方法基于非线性曲线拟合原理,根据系统实时测量数据,在单位控制周期内实现对燃料电池最大效率点功率的实时估计。采用Super-Twisting滑模算法,保证燃料电池系统在负载工况变化情况下仍能运行在最大效率点。在搭建的测试平台上,开展了多指标性能测试与对比分析。实验结果表明,与扰动观测(perturb and observe,P&O)算法相比,所提出的方法优势更加明显。另外,针对燃料电池输出存在大扰动问题,与PID控制效果进行了对比实验。实验结果显示:Super-Twisting滑模控制变换器在输入电压大扰动下具有较强的鲁棒性,有利于燃料电池系统长期稳定运行。展开更多
Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Slidi...Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Sliding Mode Controller(MPA-SMC)are proposed for such sloshing experiments.The simulator consists of a Stewart platform and a steel framework.The Stewart platform is located at the column's center of gravity(CoG)and supported by the steel framework.The platform's hydraulic servo system is controlled by a sliding mode controller with parameters optimized by MPA to improve robustness and precision.A numerical sloshing experiment is conducted using the proposed device and controller.The results show that the novel motion simulator has lower torque during the column sloshes,and the proposed controller performs better than a well-tuned PID controller in terms of target tracking precision and anti-interference capability.展开更多
In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm...In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm which was recently reported in literature.Stability analysis has been done to verify the suitability of the proposed structure for industrial processes.The proposed control strategy is applied to three different types of unstable processes including non-minimum phase and nonlinear systems.A comparative study ensures that the proposed scheme gives superior performance over the recently reported VSC system.Furthermore,the proposed method gives satisfactory results for a cart inverted pendulum system in the presence of external disturbance and noise.展开更多
Good understanding of relationship between parameters of vehicle, terrain and interaction at the interface is required to develop effective navigation and motion control algorithms for autonomous wheeled mobile robots...Good understanding of relationship between parameters of vehicle, terrain and interaction at the interface is required to develop effective navigation and motion control algorithms for autonomous wheeled mobile robots (AWMR) in rough terrain. A model and analysis of relationship among wheel slippage (S), rotation angle (0), sinkage (z) and wheel radius (r) are presented. It is found that wheel rotation angle, sinkage and radius have some influence on wheel slippage. A multi-objective optimization problem with slippage as utility function was formulated and solved in MATLAB. The results reveal the optimal values of wheel-terrain parameters required to achieve optimum slippage on dry sandy terrain. A method of slippage estimation for a five-wheeled mobile robot was presented through comparing the odometric measurements of the powered wheels with those of the fifth non-powered wheel. The experimental result shows that this method is feasible and can be used for online slippage estimation in a sandy terrain.展开更多
The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parame...The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.展开更多
文摘为保证燃料电池系统在负载工况变化条件下仍能无扰动地运行在最大效率点,提出一种基于遗忘因子递推最小二乘(forgetting factor recursive least square,FFRLS)在线辨识和Super-Twisting滑模算法的燃料电池系统实时最大效率跟踪方法。该方法基于非线性曲线拟合原理,根据系统实时测量数据,在单位控制周期内实现对燃料电池最大效率点功率的实时估计。采用Super-Twisting滑模算法,保证燃料电池系统在负载工况变化情况下仍能运行在最大效率点。在搭建的测试平台上,开展了多指标性能测试与对比分析。实验结果表明,与扰动观测(perturb and observe,P&O)算法相比,所提出的方法优势更加明显。另外,针对燃料电池输出存在大扰动问题,与PID控制效果进行了对比实验。实验结果显示:Super-Twisting滑模控制变换器在输入电压大扰动下具有较强的鲁棒性,有利于燃料电池系统长期稳定运行。
文摘Sloshing experiment is crucial to determine the reaction performance of regeneration columns on an offshore floating platform.A novel type of column motion simulating device and a Marine Predator Algorithm-based Sliding Mode Controller(MPA-SMC)are proposed for such sloshing experiments.The simulator consists of a Stewart platform and a steel framework.The Stewart platform is located at the column's center of gravity(CoG)and supported by the steel framework.The platform's hydraulic servo system is controlled by a sliding mode controller with parameters optimized by MPA to improve robustness and precision.A numerical sloshing experiment is conducted using the proposed device and controller.The results show that the novel motion simulator has lower torque during the column sloshes,and the proposed controller performs better than a well-tuned PID controller in terms of target tracking precision and anti-interference capability.
文摘In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm which was recently reported in literature.Stability analysis has been done to verify the suitability of the proposed structure for industrial processes.The proposed control strategy is applied to three different types of unstable processes including non-minimum phase and nonlinear systems.A comparative study ensures that the proposed scheme gives superior performance over the recently reported VSC system.Furthermore,the proposed method gives satisfactory results for a cart inverted pendulum system in the presence of external disturbance and noise.
基金Project(60775060) supported by the National Natural Science Foundation of ChinaProject(F200801) supported by the Natural Science Foundation of Heilongjiang Province,China+1 种基金Project(200802171053,20102304110006) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(2012RFXXG059) supported by Harbin Science and Technology Innovation Talents Special Fund,China
文摘Good understanding of relationship between parameters of vehicle, terrain and interaction at the interface is required to develop effective navigation and motion control algorithms for autonomous wheeled mobile robots (AWMR) in rough terrain. A model and analysis of relationship among wheel slippage (S), rotation angle (0), sinkage (z) and wheel radius (r) are presented. It is found that wheel rotation angle, sinkage and radius have some influence on wheel slippage. A multi-objective optimization problem with slippage as utility function was formulated and solved in MATLAB. The results reveal the optimal values of wheel-terrain parameters required to achieve optimum slippage on dry sandy terrain. A method of slippage estimation for a five-wheeled mobile robot was presented through comparing the odometric measurements of the powered wheels with those of the fifth non-powered wheel. The experimental result shows that this method is feasible and can be used for online slippage estimation in a sandy terrain.
基金Project supported by the LEB Research LaboratoryDepartment of Electrical Engineering,University of Batna 2, Algeria。
文摘The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.