期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于大数据挖掘的山区公路沿线滑坡易发性小区划 被引量:10
1
作者 文海家 李洋 +1 位作者 薛靖元 谢朋 《自然灾害学报》 CSCD 北大核心 2018年第4期159-165,共7页
本文目的是基于滑坡灾害因子地理空间数据、历史滑坡大数据分析,构建山区公路沿线滑坡易发性精细化评价的逻辑回归模型。选取高程、坡度、坡向、坡位、微地貌、曲率、顺逆向坡、归一化植被指数、岩性、距水系距离、距断层距离、距道路... 本文目的是基于滑坡灾害因子地理空间数据、历史滑坡大数据分析,构建山区公路沿线滑坡易发性精细化评价的逻辑回归模型。选取高程、坡度、坡向、坡位、微地貌、曲率、顺逆向坡、归一化植被指数、岩性、距水系距离、距断层距离、距道路距离、多年平均降雨13个因子作为滑坡易发性影响因子,以30 m精度栅格建立影响因子地理空间数据库。在研究区域441个历史滑坡数据的基础上,将地理空间分划分为滑坡区与非滑坡区,分别随机选取70%的滑坡区域与非滑坡区作为训练数据集,剩下的30%作为验证数据集。通过样本数据集的训练,建立逻辑回归分析模型。利用训练好的逻辑回归模型,对整个研究区滑坡易发性进行仿真预测。结果显示,滑坡极低、低、中、高、极高易发区面积分别占42.24%、18.42%、17.57%、16.37%、5.41%,高、极高易发区与历史滑坡位置吻合度高;训练数据集、验证数据集以及区域仿真的ROC曲线AUC值分别为0.89、0.83、0.87,评价模型具有较高的稳定性与可靠性;新近发生的3个典型滑坡均处于高或极高易发区,模型具有良好的预测功能。 展开更多
关键词 山区公路沿线 滑坡小区划 地理空间数据 大数据挖掘 逻辑回归模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部