为解决含氢综合能源系统(hydrogen integrated energy system,HIES)在源荷出力和场景概率多重不确定性下难以兼顾鲁棒性和经济性的问题,提出了一种计及场景概率的分布鲁棒和两阶段鲁棒结合的三阶段四层随机鲁棒优化方法。首先,充分考虑...为解决含氢综合能源系统(hydrogen integrated energy system,HIES)在源荷出力和场景概率多重不确定性下难以兼顾鲁棒性和经济性的问题,提出了一种计及场景概率的分布鲁棒和两阶段鲁棒结合的三阶段四层随机鲁棒优化方法。首先,充分考虑系统运行的灵活性、低碳性,建立HIES,并引入碳捕集机组和阶梯式碳交易保证系统低碳运行;其次,用鲁棒优化法和随机规划中的场景法分别处理源荷出力不确定和场景概率不确定,建立min-max-max-min三阶段四层优化模型。采用变量交替迭代的列与约束生成算法求解得到最优鲁棒调度结果以及最恶劣场景概率分布。最后,通过算例分析表明所提方法兼顾了经济性和鲁棒性,并且系统具有较强的新能源消纳能力,保证了HIES系统的低碳、经济运行。展开更多
波动性新能源的高比例接入为电力系统运行引入了随机性,对系统安全稳定运行造成影响。为提高系统安全稳定运行水平,计及了风电功率多点随机耦合注入为代表的源不确定性、节点负荷不确定性,以及故障类型、故障位置和切除时间为代表的网...波动性新能源的高比例接入为电力系统运行引入了随机性,对系统安全稳定运行造成影响。为提高系统安全稳定运行水平,计及了风电功率多点随机耦合注入为代表的源不确定性、节点负荷不确定性,以及故障类型、故障位置和切除时间为代表的网不确定性,提出了考虑源网荷不确定性的电力系统概率暂态稳定预防控制(preventive control with probabilistic transient stability, PC-PTS)模型,以及基于粒子群方法(particle swarm optimization, PSO)和点估计(point estimation, PE)的PSO-PE综合求解方法。最后通过多点耦合注入风电功率的New England 10机39节点系统对所提出的PC-PTS模型和求解方法进行验证。仿真结果表明:所提出的PC-PTS模型合理,PSO-PE综合优化方法快速有效,两者结合可提高考虑源网荷不确定性的电力系统概率暂态稳定水平。展开更多
为提高冷热电联供(Combined Cooling Heating and Power,CCHP)型微网的综合运行效益,建立了以运行费用最小和二氧化碳排放量最小为目标的优化模型。针对源荷的不确定性,提出了基于误差场景整体生成与缩减的典型场景获得方法,并引入伪F-...为提高冷热电联供(Combined Cooling Heating and Power,CCHP)型微网的综合运行效益,建立了以运行费用最小和二氧化碳排放量最小为目标的优化模型。针对源荷的不确定性,提出了基于误差场景整体生成与缩减的典型场景获得方法,并引入伪F-统计(Pseudo F-statistics,PFS)指标用于确定最佳场景缩减数目。实例计算表明,与不考虑源荷不确定的确定性优化方法相比,所提方法在应对源荷的不确定性上具有较好效果,运行费用平均下降0.31%,二氧化碳排放量平均下降4.85%。此外,计算分析表明,应用PFS指标确定最佳聚类数目可以找到模型应对源荷不确定的能力与计算时间之间的平衡点,提高模型计算效率。展开更多
文摘为解决含氢综合能源系统(hydrogen integrated energy system,HIES)在源荷出力和场景概率多重不确定性下难以兼顾鲁棒性和经济性的问题,提出了一种计及场景概率的分布鲁棒和两阶段鲁棒结合的三阶段四层随机鲁棒优化方法。首先,充分考虑系统运行的灵活性、低碳性,建立HIES,并引入碳捕集机组和阶梯式碳交易保证系统低碳运行;其次,用鲁棒优化法和随机规划中的场景法分别处理源荷出力不确定和场景概率不确定,建立min-max-max-min三阶段四层优化模型。采用变量交替迭代的列与约束生成算法求解得到最优鲁棒调度结果以及最恶劣场景概率分布。最后,通过算例分析表明所提方法兼顾了经济性和鲁棒性,并且系统具有较强的新能源消纳能力,保证了HIES系统的低碳、经济运行。
文摘波动性新能源的高比例接入为电力系统运行引入了随机性,对系统安全稳定运行造成影响。为提高系统安全稳定运行水平,计及了风电功率多点随机耦合注入为代表的源不确定性、节点负荷不确定性,以及故障类型、故障位置和切除时间为代表的网不确定性,提出了考虑源网荷不确定性的电力系统概率暂态稳定预防控制(preventive control with probabilistic transient stability, PC-PTS)模型,以及基于粒子群方法(particle swarm optimization, PSO)和点估计(point estimation, PE)的PSO-PE综合求解方法。最后通过多点耦合注入风电功率的New England 10机39节点系统对所提出的PC-PTS模型和求解方法进行验证。仿真结果表明:所提出的PC-PTS模型合理,PSO-PE综合优化方法快速有效,两者结合可提高考虑源网荷不确定性的电力系统概率暂态稳定水平。