在“双碳”目标驱动下,构建低碳、经济和灵活的能源利用体系至关重要。为此,提出一种考虑源荷双侧需求响应和氢能多元利用的综合能源系统(integrated energy system,IES)低碳优化调度模型。首先,在源侧热电联产(combined heat and power...在“双碳”目标驱动下,构建低碳、经济和灵活的能源利用体系至关重要。为此,提出一种考虑源荷双侧需求响应和氢能多元利用的综合能源系统(integrated energy system,IES)低碳优化调度模型。首先,在源侧热电联产(combined heat and power,CHP)机组中引入电锅炉(electric boiler,EB)和卡琳娜(Kalina)循环模型,解耦CHP“以热定电”和“以电定热”模式,构建CHP灵活输出模型;其次,在荷侧引入电、热需求响应模型,并与源侧CHP灵活输出模型协调优化,构建源荷双侧需求响应模型;最后,在模型中引入含制氢、用氢、燃气混氢和储氢组成的氢能多元利用模型,建立了电-热-气-氢IES低碳优化调度模型。算例仿真结果表明,所提模型不仅有效降低了系统经济成本和碳排放量,还提高了新能源的消纳能力,实现了IES低碳、经济和灵活运行。展开更多
文摘在“双碳”目标驱动下,构建低碳、经济和灵活的能源利用体系至关重要。为此,提出一种考虑源荷双侧需求响应和氢能多元利用的综合能源系统(integrated energy system,IES)低碳优化调度模型。首先,在源侧热电联产(combined heat and power,CHP)机组中引入电锅炉(electric boiler,EB)和卡琳娜(Kalina)循环模型,解耦CHP“以热定电”和“以电定热”模式,构建CHP灵活输出模型;其次,在荷侧引入电、热需求响应模型,并与源侧CHP灵活输出模型协调优化,构建源荷双侧需求响应模型;最后,在模型中引入含制氢、用氢、燃气混氢和储氢组成的氢能多元利用模型,建立了电-热-气-氢IES低碳优化调度模型。算例仿真结果表明,所提模型不仅有效降低了系统经济成本和碳排放量,还提高了新能源的消纳能力,实现了IES低碳、经济和灵活运行。