针对传统的多重信号分类(multiple signal classification,简称MUSIC)算法定位声源位置时存在计算量大的问题,提出了一种基于宏微导向的蚁群(ant colony optimization,简称ACO)-MUSIC两级相控声源定位算法。首先,利用ACO估算出声源所在...针对传统的多重信号分类(multiple signal classification,简称MUSIC)算法定位声源位置时存在计算量大的问题,提出了一种基于宏微导向的蚁群(ant colony optimization,简称ACO)-MUSIC两级相控声源定位算法。首先,利用ACO估算出声源所在的宏观位置,再用MUSIC算法精确搜索声源所在的微观方位;其次,对提出的算法进行数值仿真,并搭建实验系统进行验证。仿真和实验结果表明,所提出的算法可以高精度、快速地定位出声源所在的位置;在搜索步距为0.05°时,算法的计算复杂度和计算时间仅为传统MUSIC算法的0.25%和2.8%。展开更多
针对引导源目标定位算法在低信噪比声源信号条件下不能有效定位的问题,在推导了引导源目标定位(GTL,Target localization algorithm using a guide source)算法原理基础上,根据低信噪比条件下GTL算法处理结果的特点,提出了利用Gabor滤...针对引导源目标定位算法在低信噪比声源信号条件下不能有效定位的问题,在推导了引导源目标定位(GTL,Target localization algorithm using a guide source)算法原理基础上,根据低信噪比条件下GTL算法处理结果的特点,提出了利用Gabor滤波对算法输出条纹图进行降噪处理的方法。利用几组不同信噪比的引导声源和目标声源信号,对基于Gabor滤波降噪处理的GTL算法进行了仿真,并比较分析了其降噪前后引导源目标定位算法的处理结果。仿真结果表明,基于Gabor滤波处理后的GTL算法能准确实现低信噪比条件下的目标声源定位。展开更多
Microseismic (MS) source location plays an important role in MS monitoring. This paper proposes a MS source location method based on particle swarm optimization (PSO) and multi-sensor arrays, where a free weight joint...Microseismic (MS) source location plays an important role in MS monitoring. This paper proposes a MS source location method based on particle swarm optimization (PSO) and multi-sensor arrays, where a free weight joints the P-wave first arrival data. This method adaptively adjusts the preference for “superior” arrays and leverages “inferior” arrays to escape local optima, thereby improving the location accuracy. The effectiveness and stability of this method were validated through synthetic tests, pencil-lead break (PLB) experiments, and mining engineering applications. Specifically, for synthetic tests with 1 μs Gaussian noise and 100 μs large noise in rock samples, the location error of the multi-sensor arrays jointed location method is only 0.30 cm, which improves location accuracy by 97.51% compared to that using a single sensor array. The average location error of PLB events on three surfaces of a rock sample is reduced by 48.95%, 26.40%, and 55.84%, respectively. For mine blast event tests, the average location error of the dual sensor arrays jointed method is 62.74 m, 54.32% and 14.29% lower than that using only sensor arrays 1 and 2, respectively. In summary, the proposed multi-sensor arrays jointed location method demonstrates good noise resistance, stability, and accuracy, providing a compelling new solution for MS location in relevant mining scenarios.展开更多
文摘针对传统的多重信号分类(multiple signal classification,简称MUSIC)算法定位声源位置时存在计算量大的问题,提出了一种基于宏微导向的蚁群(ant colony optimization,简称ACO)-MUSIC两级相控声源定位算法。首先,利用ACO估算出声源所在的宏观位置,再用MUSIC算法精确搜索声源所在的微观方位;其次,对提出的算法进行数值仿真,并搭建实验系统进行验证。仿真和实验结果表明,所提出的算法可以高精度、快速地定位出声源所在的位置;在搜索步距为0.05°时,算法的计算复杂度和计算时间仅为传统MUSIC算法的0.25%和2.8%。
文摘针对引导源目标定位算法在低信噪比声源信号条件下不能有效定位的问题,在推导了引导源目标定位(GTL,Target localization algorithm using a guide source)算法原理基础上,根据低信噪比条件下GTL算法处理结果的特点,提出了利用Gabor滤波对算法输出条纹图进行降噪处理的方法。利用几组不同信噪比的引导声源和目标声源信号,对基于Gabor滤波降噪处理的GTL算法进行了仿真,并比较分析了其降噪前后引导源目标定位算法的处理结果。仿真结果表明,基于Gabor滤波处理后的GTL算法能准确实现低信噪比条件下的目标声源定位。
基金Project(SICGM2023301) supported by the State Key Laboratory of Strata Intelligent Control and Green Mining Co-founded by Shandong Province and the Ministry of Science and Technology,ChinaProject(SMDPC202202) supported by the Key Laboratory of Mining Disaster Prevention and Control,ChinaProject(U21A2030) supported by the National Natural Science Foundation of China。
文摘Microseismic (MS) source location plays an important role in MS monitoring. This paper proposes a MS source location method based on particle swarm optimization (PSO) and multi-sensor arrays, where a free weight joints the P-wave first arrival data. This method adaptively adjusts the preference for “superior” arrays and leverages “inferior” arrays to escape local optima, thereby improving the location accuracy. The effectiveness and stability of this method were validated through synthetic tests, pencil-lead break (PLB) experiments, and mining engineering applications. Specifically, for synthetic tests with 1 μs Gaussian noise and 100 μs large noise in rock samples, the location error of the multi-sensor arrays jointed location method is only 0.30 cm, which improves location accuracy by 97.51% compared to that using a single sensor array. The average location error of PLB events on three surfaces of a rock sample is reduced by 48.95%, 26.40%, and 55.84%, respectively. For mine blast event tests, the average location error of the dual sensor arrays jointed method is 62.74 m, 54.32% and 14.29% lower than that using only sensor arrays 1 and 2, respectively. In summary, the proposed multi-sensor arrays jointed location method demonstrates good noise resistance, stability, and accuracy, providing a compelling new solution for MS location in relevant mining scenarios.