基于日本气象厅Multi-functional Transport Satellite(MTSAT)可见光卫星云图、韩国气象局天气图和美国国家环境预报中心Climate Forecast System Reanalysis(CFSR)数据,选取2007-2012年2~6月发生的32次黄海海雾个例进行研究.首先...基于日本气象厅Multi-functional Transport Satellite(MTSAT)可见光卫星云图、韩国气象局天气图和美国国家环境预报中心Climate Forecast System Reanalysis(CFSR)数据,选取2007-2012年2~6月发生的32次黄海海雾个例进行研究.首先统计分析了黄海海雾的天气特征,接着归纳总结了有利于黄海海雾生成的天气系统类型,进而分别挑选了各类型的一次个例,解释其海上大气逆温层成因.结果表明:(1)黄海海雾天气系统可分为入海变性高压(南高北低、东高西低和独立高压)、中国大陆东移低压或低槽、北太平洋高压脊和入西太平洋高压4类,各自所占比例约为62.5%、21.9%、9.4%和6.2%.(2)天气系统控制下的冷暖平流与海面湍流冷却作用决定了海上大气逆温层的形成.海雾生成前,天气系统在演变过程中支配着形成逆温的暖气团,暖气团来源于陆上,则主要是上层强暖平流、下层弱暖(冷)平流导致逆温;暖气团来源于海上,则多由近冷海面的湍流混合、冷却降温形成逆温.展开更多
通过数值模拟方法研究了不同氧化剂(O_(2)/N_(2)、O_(2)/CO_(2)和O_(2)/H_(2)O)和燃烧器出口氧浓度(21%~30%)对15kW实验炉内甲烷非预混中度与极度低氧稀释(moderate or intense lowoxygen dilution,MILD)富氧燃烧的流场、燃烧场及湍流...通过数值模拟方法研究了不同氧化剂(O_(2)/N_(2)、O_(2)/CO_(2)和O_(2)/H_(2)O)和燃烧器出口氧浓度(21%~30%)对15kW实验炉内甲烷非预混中度与极度低氧稀释(moderate or intense lowoxygen dilution,MILD)富氧燃烧的流场、燃烧场及湍流–化学相互作用的影响。研究结果表明,不同稀释剂下炉内流动和烟气卷吸情况几乎相同,但在炉内反应方面存在较大差异。各稀释剂下炉内燃烧温度和CO、OH浓度的高低顺序为:N_(2)>CO_(2)>H_(2)O。而且,N_(2)稀释时炉内存在集中的高温区(>1800K),且温度和组分浓度随氧浓度增大而快速升高。而CO_(2)或H_(2)O稀释时炉内温度、组分分布均匀,且对氧浓度变化不敏感。另外,相比CO_(2)或H_(2)O稀释,N_(2)稀释下反应区内的层流火焰速度和Damköhler数(Da)更大,且随氧浓度的升高而急剧增加,30%氧浓度下已经进入传统薄反应区燃烧模式。而CO_(2)或H_(2)O的稀释可以显著降低层流火焰速度,增长化学反应时间,减小Da数,在高氧浓度下依旧保持在分布式反应区,即MILD燃烧区。因此,相比N_(2)稀释,CO_(2)或H_(2)O稀释下更有利于建立MILD富氧燃烧。展开更多
文摘基于日本气象厅Multi-functional Transport Satellite(MTSAT)可见光卫星云图、韩国气象局天气图和美国国家环境预报中心Climate Forecast System Reanalysis(CFSR)数据,选取2007-2012年2~6月发生的32次黄海海雾个例进行研究.首先统计分析了黄海海雾的天气特征,接着归纳总结了有利于黄海海雾生成的天气系统类型,进而分别挑选了各类型的一次个例,解释其海上大气逆温层成因.结果表明:(1)黄海海雾天气系统可分为入海变性高压(南高北低、东高西低和独立高压)、中国大陆东移低压或低槽、北太平洋高压脊和入西太平洋高压4类,各自所占比例约为62.5%、21.9%、9.4%和6.2%.(2)天气系统控制下的冷暖平流与海面湍流冷却作用决定了海上大气逆温层的形成.海雾生成前,天气系统在演变过程中支配着形成逆温的暖气团,暖气团来源于陆上,则主要是上层强暖平流、下层弱暖(冷)平流导致逆温;暖气团来源于海上,则多由近冷海面的湍流混合、冷却降温形成逆温.
文摘通过数值模拟方法研究了不同氧化剂(O_(2)/N_(2)、O_(2)/CO_(2)和O_(2)/H_(2)O)和燃烧器出口氧浓度(21%~30%)对15kW实验炉内甲烷非预混中度与极度低氧稀释(moderate or intense lowoxygen dilution,MILD)富氧燃烧的流场、燃烧场及湍流–化学相互作用的影响。研究结果表明,不同稀释剂下炉内流动和烟气卷吸情况几乎相同,但在炉内反应方面存在较大差异。各稀释剂下炉内燃烧温度和CO、OH浓度的高低顺序为:N_(2)>CO_(2)>H_(2)O。而且,N_(2)稀释时炉内存在集中的高温区(>1800K),且温度和组分浓度随氧浓度增大而快速升高。而CO_(2)或H_(2)O稀释时炉内温度、组分分布均匀,且对氧浓度变化不敏感。另外,相比CO_(2)或H_(2)O稀释,N_(2)稀释下反应区内的层流火焰速度和Damköhler数(Da)更大,且随氧浓度的升高而急剧增加,30%氧浓度下已经进入传统薄反应区燃烧模式。而CO_(2)或H_(2)O的稀释可以显著降低层流火焰速度,增长化学反应时间,减小Da数,在高氧浓度下依旧保持在分布式反应区,即MILD燃烧区。因此,相比N_(2)稀释,CO_(2)或H_(2)O稀释下更有利于建立MILD富氧燃烧。