期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于支持向量机的渐进直推式分类学习算法 被引量:88
1
作者 陈毅松 汪国平 董士海 《软件学报》 EI CSCD 北大核心 2003年第3期451-460,共10页
支持向量机(support vector machine)是近年来在统计学习理论的基础上发展起来的一种新的模式识别方法,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势.直推式学习(transductive inference)试图根据已知样本对特定的未... 支持向量机(support vector machine)是近年来在统计学习理论的基础上发展起来的一种新的模式识别方法,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势.直推式学习(transductive inference)试图根据已知样本对特定的未知样本建立一套进行识别的方法和准则.较之传统的归纳式学习方法而言,直推式学习往往更具普遍性和实际意义.提出了一种基于支持向量机的渐进直推式分类学习算法,在少量有标签样本和大量无标签样本所构成的混合样本训练集上取得了良好的学习效果. 展开更多
关键词 支持向量机 渐进直推式分类学习算法 机器学习 统计学习理论
在线阅读 下载PDF
基于直推式支持向量机的图像分类算法 被引量:10
2
作者 沈新宇 许宏丽 官腾飞 《计算机应用》 CSCD 北大核心 2007年第6期1463-1464,1467,共3页
直推式支持向量机(TSVM)是在利用有标签样本的同时,考虑无标签样本对分类器的影响,并且结合支持向量机算法,实现一种高效的分类算法。它在包含少量有标签样本的训练集和大量无标签样本的测试集上,具有良好的效果。但是它有算法时间复杂... 直推式支持向量机(TSVM)是在利用有标签样本的同时,考虑无标签样本对分类器的影响,并且结合支持向量机算法,实现一种高效的分类算法。它在包含少量有标签样本的训练集和大量无标签样本的测试集上,具有良好的效果。但是它有算法时间复杂度比较高,需要预先设置正负例比例等不足。通过对原有算法的改进,新算法在时间复杂度上明显下降,同时算法效果没有明显的影响。 展开更多
关键词 支持向量机 学习 图像分类
在线阅读 下载PDF
基于人工鱼群优化的直推式支持向量机分类算法 被引量:7
3
作者 齐芳 冯昕 徐其江 《计算机应用与软件》 CSCD 北大核心 2013年第3期294-296,共3页
提出基于人工鱼群优化的直推式支持向量机分类算法。该算法使直推式学习思想的优势得到充分的展现,在部分UCI标准数据集和20-Newgroups文本实验数据集上的对比实验表明,该算法较经典支持向量机算法和基于蚁群算法的直推式支持向量机算... 提出基于人工鱼群优化的直推式支持向量机分类算法。该算法使直推式学习思想的优势得到充分的展现,在部分UCI标准数据集和20-Newgroups文本实验数据集上的对比实验表明,该算法较经典支持向量机算法和基于蚁群算法的直推式支持向量机算法具有更高的分类性能。 展开更多
关键词 学习 支持向量机 人工鱼群算法
在线阅读 下载PDF
一种针对弱标记的直推式多标记分类方法 被引量:13
4
作者 孔祥南 黎铭 +1 位作者 姜远 周志华 《计算机研究与发展》 EI CSCD 北大核心 2010年第8期1392-1399,共8页
多标记学习主要解决一个样本可以同时属于多个类别的问题,它广泛适用于图像场景分类、文本分类等任务.在传统的多标记学习中,分类器往往需要利用大量具有完整标记的训练样本才能获得较好的分类性能,然而,在很多现实应用中又往往只能获... 多标记学习主要解决一个样本可以同时属于多个类别的问题,它广泛适用于图像场景分类、文本分类等任务.在传统的多标记学习中,分类器往往需要利用大量具有完整标记的训练样本才能获得较好的分类性能,然而,在很多现实应用中又往往只能获得少量标记不完整的训练样本.为了更好地利用这些弱标记训练样本,提出一种针对弱标记的直推式多标记分类方法,它可以通过标记误差加权来补全样本标记,同时也能更好地利用弱标记样本提高分类性能.实验结果表明,该方法在弱标记情况下的图像场景分类任务上具有较好的性能提高. 展开更多
关键词 机器学习 多标记学习 弱标记 图像场景分类 学习
在线阅读 下载PDF
基于Logistic回归分析的直推式迁移学习 被引量:4
5
作者 胡学钢 方玉成 张玉红 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第12期1797-1801,1810,共6页
传统的机器学习方法基于一个基本的假设:训练数据和测试数据遵循相同的分布。然而,在许多现实的应用中,这种假设并不能够被保证。在这种情况下,传统的机器学习方法因没有意识到分布的改变而可能失败。近年来,迁移学习技术被专门用来解... 传统的机器学习方法基于一个基本的假设:训练数据和测试数据遵循相同的分布。然而,在许多现实的应用中,这种假设并不能够被保证。在这种情况下,传统的机器学习方法因没有意识到分布的改变而可能失败。近年来,迁移学习技术被专门用来解决这一缺陷。文章提出了一种叫做TTLR的方法,将原始领域中的训练数据有效地迁移到目标领域中,该方法首先对Logistic回归分析模型进行扩展,然后利用不同领域概率分布之间的差异性,调节训练数据中每个实例的权重,从而使得训练得到的分类器更加适应于目标领域;在所选取的数据集上得到的实验结果表明,与传统的监督式学习方法相比,所提出的方法有很大的优势。 展开更多
关键词 机器学习 LOGISTIC回归分析 迁移学习 分类
在线阅读 下载PDF
基于代价敏感直推式学习的故障诊断方法 被引量:3
6
作者 吴薇 胡静涛 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第5期1023-1028,共6页
针对故障诊断领域存在的不考虑误诊断代价以及提出泛化能力强的诊断规则难等问题,提出了一种代价敏感直推式学习故障诊断方法。基于Kolmogorov算法随机性理论和代价敏感学习最小期望误分类代价准则提出了代价敏感直推式分类机制,并在此... 针对故障诊断领域存在的不考虑误诊断代价以及提出泛化能力强的诊断规则难等问题,提出了一种代价敏感直推式学习故障诊断方法。基于Kolmogorov算法随机性理论和代价敏感学习最小期望误分类代价准则提出了代价敏感直推式分类机制,并在此基础上设计了用于故障诊断的CsTCM-kNN算法。通过旋转机械轴系故障代价敏感诊断实验,验证了该方法能够有效地降低误诊断代价,且保证较高的诊断准确率。 展开更多
关键词 故障诊断 代价敏感 学习 算法随机性理论
在线阅读 下载PDF
基于多主体系统的多分类直推学习
7
作者 潘俊 孔繁胜 王瑞琴 《计算机集成制造系统》 EI CSCD 北大核心 2009年第8期1656-1663,共8页
针对少量样本已标记和大量样本未标记的多分类问题,提出了一种新颖的基于多主体系统的直推学习方法。该方法将以Agent表示的样本点随机映射到输出空间构成初始空间格局,空间格局随时间演化的过程是一个自组织的马尔可夫过程,它将在有限... 针对少量样本已标记和大量样本未标记的多分类问题,提出了一种新颖的基于多主体系统的直推学习方法。该方法将以Agent表示的样本点随机映射到输出空间构成初始空间格局,空间格局随时间演化的过程是一个自组织的马尔可夫过程,它将在有限时间内达到平稳分布,从而求得最佳的标记分布。根据该方法,给出了两个多主体系统直推学习算法,并讨论了算法的收敛性和复杂度。最后在两个数据集上进行了仿真测试,表明了算法的有效性与实用性。 展开更多
关键词 学习 多主体系统 自组织 分类
在线阅读 下载PDF
直推式网络表示学习 被引量:2
8
作者 张霞 陈维政 +1 位作者 谢正茂 闫宏飞 《计算机科学与探索》 CSCD 北大核心 2017年第4期520-527,共8页
网络表示学习是一个经典的学习问题,其目的是将高维的网络在低维度的向量空间进行表示。目前大多数的网络表示学习方法都是无监督的,忽视了标签信息。受LINE(large-scale information network embed-ding)算法启发而提出了一种半监督的... 网络表示学习是一个经典的学习问题,其目的是将高维的网络在低维度的向量空间进行表示。目前大多数的网络表示学习方法都是无监督的,忽视了标签信息。受LINE(large-scale information network embed-ding)算法启发而提出了一种半监督的学习算法TLINE。TLINE是一种直推式表示学习算法,其通过优化LINE部分的目标函数来保留网络的局部特性。而标签信息部分,则使用线性支持向量机(support vector machine)来提高带标签结点的区分度。通过边采样、负采样和异步随机梯度下降来降低算法的复杂度,从而使TLINE算法可以处理大型的网络。最后,在论文引用数据集Cite Seer和共同作者数据集DBLP上进行了实验,实验结果表明,TLINE算法明显优于经典的无监督网络表示学习算法Deep Walk和LINE。 展开更多
关键词 网络表示学习 结点分类
在线阅读 下载PDF
直推式支持向量机在Web信息抽取中的应用研究 被引量:6
9
作者 肖建鹏 张来顺 任星 《计算机工程与应用》 CSCD 北大核心 2009年第2期147-149,共3页
直推式支持向量机是一种直接从已知样本出发对特定的未知样本进行识别的分类技术。在分析直推式支持向量机分类原理的基础上,提出一种基于直推式支持向量机的Web信息抽取方法,直接从分类的角度抽取Web信息。只需要提供少量标记样本就可... 直推式支持向量机是一种直接从已知样本出发对特定的未知样本进行识别的分类技术。在分析直推式支持向量机分类原理的基础上,提出一种基于直推式支持向量机的Web信息抽取方法,直接从分类的角度抽取Web信息。只需要提供少量标记样本就可以实现对大量未标注样本的分类标注,从而以分类的方式完成Web数据抽取任务。实验结果表明,使用这种方法进行Web信息抽取是有效性。 展开更多
关键词 WEB信息抽取 分类学习 支持向量机
在线阅读 下载PDF
基于加权元学习的节点分类算法 被引量:1
10
作者 万聪 王英 《吉林大学学报(理学版)》 CAS 北大核心 2023年第2期331-337,共7页
受注意力机制和直推式学习方法的启发,提出一种基于加权元学习的节点分类算法.首先利用欧氏距离计算元学习子任务间数据分布的差异;然后利用子图的邻接矩阵计算捕获子任务间数据点的结构差异;最后将二者转化为权重对元训练阶段更新元学... 受注意力机制和直推式学习方法的启发,提出一种基于加权元学习的节点分类算法.首先利用欧氏距离计算元学习子任务间数据分布的差异;然后利用子图的邻接矩阵计算捕获子任务间数据点的结构差异;最后将二者转化为权重对元训练阶段更新元学习器过程进行加权,构建优化的元学习模型,解决了经典元学习算法在元训练阶段所有元训练子任务的损失是等权重更新元学习器参数的问题.该算法在数据集Citeseer和Cora上的实验结果优于其他经典算法,证明了该算法在少样本节点分类任务上的有效性. 展开更多
关键词 学习 注意力机制 节点分类 学习
在线阅读 下载PDF
协同主动学习和半监督方法的海冰图像分类 被引量:3
11
作者 韩彦岭 赵耀 +4 位作者 周汝雁 张云 王静 杨树瑚 洪中华 《海洋学报》 CAS CSCD 北大核心 2020年第1期123-135,共13页
海冰遥感光谱影像分类中标签样本难以获取,导致海冰分类精度难以提高,但是大量包含丰富信息的未标签样本却没有得到充分利用,针对这种情况,提出一种协同主动学习和半监督学习方法用于海冰遥感图像分类。在主动学习部分,结合最优标号和... 海冰遥感光谱影像分类中标签样本难以获取,导致海冰分类精度难以提高,但是大量包含丰富信息的未标签样本却没有得到充分利用,针对这种情况,提出一种协同主动学习和半监督学习方法用于海冰遥感图像分类。在主动学习部分,结合最优标号和次优标号、自组织映射神经网络以及增强的聚类多样性算法来选择兼具不确定性和差异性的样本参与训练;在半监督学习部分,利用直推式支持向量机,并且融合主动学习思想从大量未标签样本中选取相对可靠且包含一定信息量的样本进行迭代训练;然后协同主动学习分类结果和半监督分类结果,通过一致性验证保证所加入伪标签样本的正确性。为了验证方法的有效性,分别采用巴芬湾地区30 m分辨率的Hyperion高光谱数据(验证数据为15 m分辨率的Landsat-8数据)和辽东湾地区15 m分辨率的Landsat-8数据(验证数据为4.77 m分辨率的Google Earth数据)进行海冰分类实验。实验结果表明,相对其他传统方法,该协同分类方法可以在只有少量标签样本的情况下,充分利用大量未标签样本中包含的信息,实现快速收敛,并获得较高的分类精度(两个实验的总体精度分别为90.003%和93.288%),适用于海冰遥感图像分类。 展开更多
关键词 海冰分类 主动学习 半监督学习 支持向量机 协同训练
在线阅读 下载PDF
基于半监督学习的遥感影像分类训练样本时空拓展方法 被引量:4
12
作者 任广波 张杰 +1 位作者 马毅 宋平舰 《国土资源遥感》 CSCD 北大核心 2013年第2期87-94,共8页
针对无法直接获取训练样本的遥感影像分类问题,从满足条件的其他影像中选择替代训练样本是最直接的方法,但由于地物类型在不同影像中的辐射环境不同,导致替代训练样本对待分类影像的代表性较差,无法保证分类精度。以直推式支持向量机(tr... 针对无法直接获取训练样本的遥感影像分类问题,从满足条件的其他影像中选择替代训练样本是最直接的方法,但由于地物类型在不同影像中的辐射环境不同,导致替代训练样本对待分类影像的代表性较差,无法保证分类精度。以直推式支持向量机(transductive support vector machine,TSVM)分类为例,发展了一种基于半监督学习的遥感影像训练样本时空拓展方法。该方法采用非监督方法从待分类影像中选择大量未标记样本,挖掘各类地物在特征空间中的结构信息;以替代训练样本所拟合的分类面为初始面,通过自适应渐进式的优化,实现对待分类影像的高精度分类。该方法要求训练样本的来源影像与待分类影像具有相似的地物分布和相近的时相。以SPOT5和QuickBird影像分类为例,分别通过基于像元的和基于分割对象的分类实验证实,该文提出的方法可有效地实现训练样本的时空拓展应用。 展开更多
关键词 遥感分类 半监督学习 支持向量机(TSVM) 样本拓展应用
在线阅读 下载PDF
主动学习与半监督技术相结合的海冰图像分类 被引量:2
13
作者 韩彦岭 李鹏 +2 位作者 张云 徐利军 王静 《遥感信息》 CSCD 北大核心 2019年第2期15-22,共8页
针对海冰遥感图像分类问题中标签样本获取困难、标注成本较高导致海冰分类精度难以提高的问题,提出了一种主动学习与半监督学习相结合的方式用于海冰分类。首先,利用基于不确定性准则和多样性准则进行主动学习方法,选择一批最具信息量... 针对海冰遥感图像分类问题中标签样本获取困难、标注成本较高导致海冰分类精度难以提高的问题,提出了一种主动学习与半监督学习相结合的方式用于海冰分类。首先,利用基于不确定性准则和多样性准则进行主动学习方法,选择一批最具信息量的标签样本建立标签样本集;其次,充分利用大量的未标签样本信息,并融合主动学习采样的思想选出部分具有代表性且分布在支持向量周边的半标签样本,建立半监督分类模型;最后,将主动学习方法和直推式支持向量机相结合构建分类模型实现海冰图像分类。实验结果表明,相对于其他方法,该方法在只有少量标签样本的情况下,可以获得更高的分类精度,该方式可有效解决遥感海冰分类问题。 展开更多
关键词 海冰 主动学习 半监督学习 支持向量机 分类
在线阅读 下载PDF
基于霍夫森林和半监督学习的图像分类 被引量:1
14
作者 王力冠 冯瑞 《计算机工程与应用》 CSCD 北大核心 2016年第20期20-25,51,共7页
机器学习中的监督学习算法需要用有标记样本训练分类模型。而收集训练样本,并进行分类的过程,需要耗费大量人力物力以及时间。因此,如何高效率地完成图像分类一直是业内研究的热点。提出了一种基于霍夫森林和半监督学习的图像分类算法,... 机器学习中的监督学习算法需要用有标记样本训练分类模型。而收集训练样本,并进行分类的过程,需要耗费大量人力物力以及时间。因此,如何高效率地完成图像分类一直是业内研究的热点。提出了一种基于霍夫森林和半监督学习的图像分类算法,能用较少的样本训练分类器,并在分类的过程中不断获取新的训练样本。并对部分训练结果加以人工标注,该方法有效提高了标注效率。利用COREL数据对该算法进行了实验验证,结果表明,该算法可以利用少量的训练样本,得到令人满意的标注精确度,提高人工效率。 展开更多
关键词 监督学习 霍夫森林 半监督学习 支持向量机 图像分类
在线阅读 下载PDF
采用改进PTSVM的入侵检测研究 被引量:10
15
作者 刘宇 朱随江 刘宝旭 《计算机工程与应用》 CSCD 2012年第5期1-3,74,共4页
针对ISVM以及TSVM在基于异常的入侵检测中存在的问题,面向网络入侵数据特征改进了PTSVM算法,提出了有倾向的区域标注法,使其可以快速准确地对以无标签训练样本为主的入侵数据进行训练学习,得到接近最优解的分类超平面。实验证明基于改进... 针对ISVM以及TSVM在基于异常的入侵检测中存在的问题,面向网络入侵数据特征改进了PTSVM算法,提出了有倾向的区域标注法,使其可以快速准确地对以无标签训练样本为主的入侵数据进行训练学习,得到接近最优解的分类超平面。实验证明基于改进PTSVM的入侵检测算法在训练和检测速度上明显高于其他算法,对于攻击样本的检测率有很大提高。 展开更多
关键词 网络安全 入侵检测 半监督学习 渐进支持向量机 有倾向区域标注
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部