期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
高性能YOLOv5:面向嵌入式平台高性能目标检测算法研究 被引量:5
1
作者 刘乔寿 赵志源 +1 位作者 王均成 皮胜文 《电子与信息学报》 EI CSCD 北大核心 2023年第6期2205-2215,共11页
针对目前深度学习单阶段检测算法综合性能不平衡以及在嵌入式设备难以部署等问题,该文提出一种面向嵌入式平台的高性能目标检测算法。基于只看1次5代(YOLOv5)网络,改进算法首先在主干网络部分采用设计的空间颈块代替原有的焦点模块,结... 针对目前深度学习单阶段检测算法综合性能不平衡以及在嵌入式设备难以部署等问题,该文提出一种面向嵌入式平台的高性能目标检测算法。基于只看1次5代(YOLOv5)网络,改进算法首先在主干网络部分采用设计的空间颈块代替原有的焦点模块,结合改进的混洗网络2代替换原有的跨级局部暗网络,减小空间金字塔池化(SPP)的内核尺寸,实现了主干网络的轻量化。其次,颈部采用了基于路径聚合网络(PAN)设计的增强型路径聚合网络(EPAN),增加了P6大目标输出层,提高了网络的特征提取能力。然后,检测头部分采用以自适应空间特征融合(ASFF)为基础设计的自适应空洞空间特征融合(A-ASFF)来替代原有的检测头,解决了物体尺度变化问题,在少量增加额外开销情况下大幅提升检测精度。最后,函数部分采用高效交并比(EIoU)代替完整交并比(CIoU)损失函数,采用S型加权线性单元(SiLU)代替HardSwish激活函数,提升了模型的综合性能。实验结果表明,与YOLOv5-S相比,该文提出的同版本算法在mAP@.5,mAP@.5:.95上分别提高了4.6%和6.3%,参数量降低了43.5%,计算复杂度降低了12.0%,在Jetson Nano平台上使用原模型和TensorRT加速模型进行速度评估,分别减少了8.1%和9.8%的推理延迟。该文所提算法的综合指标超越了众多优秀的目标检测网络,对嵌入式平台更为友好,具有实际应用意义。 展开更多
关键词 目标检测 YOLOv5 混洗网络2代 自适应空间特征融合 嵌入式设备 TensorRT加速
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部