期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于KD树和混沌蜉蝣优化的并行谱聚类算法 被引量:2
1
作者 胡健 刘祥敏 +1 位作者 毛伊敏 陈志刚 《计算机集成制造系统》 EI CSCD 北大核心 2023年第12期4001-4020,共20页
针对大数据环境下并行谱聚类算法存在的节点负载不均衡、冗余计算、矩阵相乘时间开销大以及初始簇中心敏感等问题,提出了基于KD(k-dimension)树和混沌蜉蝣优化算法的并行谱聚类算法(PSC-MO)。首先,提出基于采样的KD-tree数据分区策略(D... 针对大数据环境下并行谱聚类算法存在的节点负载不均衡、冗余计算、矩阵相乘时间开销大以及初始簇中心敏感等问题,提出了基于KD(k-dimension)树和混沌蜉蝣优化算法的并行谱聚类算法(PSC-MO)。首先,提出基于采样的KD-tree数据分区策略(DPS)划分数据,保证了节点间负载均衡;其次,在构建稀疏相似矩阵过程中,提出优化的分区分配策略(OPA)和基于三角不等式的KD树剪枝策略以进行跨分区的t近邻搜索,避免了过多的冗余计算;然后,提出正规化定理,通过元素对应相乘的方式代替矩阵相乘以优化Laplacian矩阵正规化过程,有效地减少了时间开销;最后,提出混沌蜉蝣优化算法(CMO),得到最佳位置作为初始簇中心后进行k-means并行聚类,解决了算法对初始簇中心敏感的问题。实验表明,PSC-MO算法不但具有良好的聚类效果,而且在大规模数据集上表现出了良好的数据和系统可扩展性。 展开更多
关键词 大数据 并行化 MAPREDUCE模型 谱聚类 KD树 混沌蜉蝣优化算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部