针对传统比例-积分-微分(proportional integral differential,PID)在无刷直流电机转速控制中存在响应速度慢、稳定性差等缺点,提出了一种基于混沌精英黏菌算法的自适应控制方法。首先,分析并建立了无刷直流电机数学模型。其次,为进一...针对传统比例-积分-微分(proportional integral differential,PID)在无刷直流电机转速控制中存在响应速度慢、稳定性差等缺点,提出了一种基于混沌精英黏菌算法的自适应控制方法。首先,分析并建立了无刷直流电机数学模型。其次,为进一步提高标准黏菌算法的收敛速度和求解精度,采用Tent混沌映射丰富种群多样性,同时引入精英反向学习策略扩大搜索范围。最后,将上述改进算法应用于无刷直流电机的速度环PID参数自整定。通过在不同运行条件下进行MATLAB仿真以及实验,结果表明:对比传统PID以及模糊PID,所提方法能够使得控制精度得到显著提高,并且具有响应速度快,抗干扰能力强等优势。展开更多
为提升哈里斯鹰优化算法收敛精度,解决易陷入局部最优等问题,提出了一种基于迭代混沌精英反向学习和黄金正弦策略的哈里斯鹰优化算法(gold sine HHO,GSHHO)。利用无限迭代混沌映射初始化种群,运用精英反向学习策略筛选优质种群,提高种...为提升哈里斯鹰优化算法收敛精度,解决易陷入局部最优等问题,提出了一种基于迭代混沌精英反向学习和黄金正弦策略的哈里斯鹰优化算法(gold sine HHO,GSHHO)。利用无限迭代混沌映射初始化种群,运用精英反向学习策略筛选优质种群,提高种群质量,增强算法的全局搜索能力;使用一种收敛因子调整策略重新计算猎物能量,平衡算法的全局探索和局部开发能力;在哈里斯鹰的开发阶段引入黄金正弦策略,替换原有的位置更新方法,提升算法的局部开发能力;在9个测试函数和不同规模的栅格地图上评估GSHHO的有效性。实验结果表明:GSHHO在不同测试函数中具有较好的寻优精度和稳定性能,在2次机器人路径规划中路径长度较原始HHO算法分别减少4.4%、3.17%,稳定性分别提升52.98%、63.12%。展开更多
文摘针对传统比例-积分-微分(proportional integral differential,PID)在无刷直流电机转速控制中存在响应速度慢、稳定性差等缺点,提出了一种基于混沌精英黏菌算法的自适应控制方法。首先,分析并建立了无刷直流电机数学模型。其次,为进一步提高标准黏菌算法的收敛速度和求解精度,采用Tent混沌映射丰富种群多样性,同时引入精英反向学习策略扩大搜索范围。最后,将上述改进算法应用于无刷直流电机的速度环PID参数自整定。通过在不同运行条件下进行MATLAB仿真以及实验,结果表明:对比传统PID以及模糊PID,所提方法能够使得控制精度得到显著提高,并且具有响应速度快,抗干扰能力强等优势。
文摘为提升哈里斯鹰优化算法收敛精度,解决易陷入局部最优等问题,提出了一种基于迭代混沌精英反向学习和黄金正弦策略的哈里斯鹰优化算法(gold sine HHO,GSHHO)。利用无限迭代混沌映射初始化种群,运用精英反向学习策略筛选优质种群,提高种群质量,增强算法的全局搜索能力;使用一种收敛因子调整策略重新计算猎物能量,平衡算法的全局探索和局部开发能力;在哈里斯鹰的开发阶段引入黄金正弦策略,替换原有的位置更新方法,提升算法的局部开发能力;在9个测试函数和不同规模的栅格地图上评估GSHHO的有效性。实验结果表明:GSHHO在不同测试函数中具有较好的寻优精度和稳定性能,在2次机器人路径规划中路径长度较原始HHO算法分别减少4.4%、3.17%,稳定性分别提升52.98%、63.12%。