期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
多分支混沌变异的头脑风暴优化算法 被引量:4
1
作者 衣俊艳 施晓东 杨刚 《计算机工程与应用》 CSCD 北大核心 2022年第16期129-138,共10页
头脑风暴优化算法是一种受人类群体行为启发的新型群智能优化算法。该算法通过模拟人类使用头脑风暴创造性解决问题的行为,在解空间中分析个体分布,并使用变异生成新个体,多次迭代求得最优解,具有较高的鲁棒性和自适应能力。针对头脑风... 头脑风暴优化算法是一种受人类群体行为启发的新型群智能优化算法。该算法通过模拟人类使用头脑风暴创造性解决问题的行为,在解空间中分析个体分布,并使用变异生成新个体,多次迭代求得最优解,具有较高的鲁棒性和自适应能力。针对头脑风暴优化算法精度较差、易陷入局部最优导致早熟收敛的缺陷,提出了一种多分支混沌变异的头脑风暴优化算法。该算法选取8种混沌映射,设计了一种多分支混沌变异算子。当原始算法陷入局部最优时,使用多分支混沌变异生成新个体,利用多种混沌运动的遍历性、随机性和多样性,扩大了混沌空间的范围,增强了算法全局搜索的能力。对10个经典测试函数的10、20、30维问题进行测试,并与原始头脑风暴优化算法、粒子群优化算法、遗传算法和布谷鸟搜索算法进行对比,实验结果表明,所提出的算法可以有效避免陷入局部最优,具有更高的稳定性和全局搜索能力。 展开更多
关键词 混沌 头脑风暴优化算法 多分支混沌变异 群智能优化算法
在线阅读 下载PDF
基于全局最优和差分变异的头脑风暴优化算法 被引量:7
2
作者 马威强 高永琪 赵苗 《系统工程与电子技术》 EI CSCD 北大核心 2022年第1期270-278,共9页
针对头脑风暴优化(brain storm optimization, BSO)算法的选择操作中仅部分个体更新追随全局最优和变异操作中步长不能自适应的问题,采用追随全局最优策略以充分利用全局最优信息,并用差分变异代替原来的高斯变异以自适应调节变异步长,... 针对头脑风暴优化(brain storm optimization, BSO)算法的选择操作中仅部分个体更新追随全局最优和变异操作中步长不能自适应的问题,采用追随全局最优策略以充分利用全局最优信息,并用差分变异代替原来的高斯变异以自适应调节变异步长,提出了基于全局最优和差分变异的BSO(global-best difference-mutation brain storm optimization, GDBSO)算法。通过6个标准测试函数极值寻优的Matlab仿真对比研究表明GDBSO具有优良性能,较好地解决了原BSO搜索效率低的问题,提高了算法的寻优精度和收敛速度。GDBSO结合自主式水下航行器(autonomous underwater vehicle, AUV)路径规划应用的仿真验证了算法的有效性和可行性。 展开更多
关键词 全局最优 差分变异 头脑风暴优化算法 自主式水下航行器 路径规划
在线阅读 下载PDF
目标空间聚类的差分头脑风暴优化算法 被引量:7
3
作者 吴亚丽 付玉龙 +1 位作者 王鑫睿 刘庆 《控制理论与应用》 EI CAS CSCD 北大核心 2017年第12期1583-1593,共11页
作为一种新型的群体智能优化算法,头脑风暴优化(brain storm optimization,BSO)算法一经提出便引起了众多研究者的关注.本文在对原始头脑风暴算法的聚类操作和变异操作改进的基础上,提出了基于目标空间聚类的差分头脑风暴(difference br... 作为一种新型的群体智能优化算法,头脑风暴优化(brain storm optimization,BSO)算法一经提出便引起了众多研究者的关注.本文在对原始头脑风暴算法的聚类操作和变异操作改进的基础上,提出了基于目标空间聚类的差分头脑风暴(difference brain storm optimization based on clustering in objective space,DBSO–OS)算法.算法通过对目标空间的聚类替代对决策空间的聚类,减小了算法的运算复杂度;采用差分变异代替高斯变异来增加种群的多样性.多个测试函数的仿真结果表明,目标空间聚类的差分头脑风暴算法不仅提高了算法的寻优速度,而且提高了算法的寻优精度.文中进一步分析了参数对算法性能的影响,设计了最佳参数选择方案,并用于对实际热电联供经济调度问题的求解,验证了算法的实用性. 展开更多
关键词 头脑风暴算法 聚类 差分变异 目标空间
在线阅读 下载PDF
基于HSBSO算法的城市物流无人机指派
4
作者 张书琴 夏洪山 +2 位作者 江炜 杨文凯 王莫凡 《计算机工程与应用》 北大核心 2025年第17期355-364,共10页
针对头脑风暴优化算法求解带有时间窗同时寄取快递的城市物流无人机任务指派效果差、收敛速度慢等问题,提出了一种混合策略改进的头脑风暴优化算法(hybrid strategy-improved brain storm optimization,HSBSO)。通过Sobol序列初始化种群... 针对头脑风暴优化算法求解带有时间窗同时寄取快递的城市物流无人机任务指派效果差、收敛速度慢等问题,提出了一种混合策略改进的头脑风暴优化算法(hybrid strategy-improved brain storm optimization,HSBSO)。通过Sobol序列初始化种群,增加种群多样性;引入改进的Sine混沌映射修正中间粒子,再用量子行为产生新粒子,提高算法全局搜索能力的同时加快收敛速度;二次函数动态调整局部搜索概率,控制全局搜索及局部搜索的精度;运用基于观测的变异学习策略跳出局部最优。实验结果表明,HSBSO算法与基本BSO算法、GA及SA相比,平均适应度值分别降低1.5%、21.4%及5.7%,程序运行时间分别下降4.5%、98.2%及70.2%,HSBSO算法运行时间增长率为每客户2.2 s,且HSBSO获得的90%解的适应度值优于BSO适应度值的平均值。同时,基于观测的变异学习策略在跳出局部最优的能力及稳定性方面也显著优于莱维飞行、动态透镜成像及透镜成像反向学习策略。 展开更多
关键词 城市物流无人机 量子行为 Sine混沌映射 基于观测的变异学习策略 头脑风暴优化算法
在线阅读 下载PDF
带时间窗的多中心半开放式VRPSDP问题研究 被引量:4
5
作者 张颖钰 吴立云 贾胜钛 《系统仿真学报》 CAS CSCD 北大核心 2023年第11期2464-2475,共12页
针对带时间窗的多中心半开放式同时送取货车辆路径问题,构建了配送中心车辆进出平衡且以车辆配送距离最小化为目标的带时间窗的多中心半开放式同时送取货车辆路径问题的数学模型。设计了混沌变异头脑风暴算法求解该问题,采用顺序交叉策... 针对带时间窗的多中心半开放式同时送取货车辆路径问题,构建了配送中心车辆进出平衡且以车辆配送距离最小化为目标的带时间窗的多中心半开放式同时送取货车辆路径问题的数学模型。设计了混沌变异头脑风暴算法求解该问题,采用顺序交叉策略增加种群多样性,设置2种混沌映射进行混沌变异操作,利用混沌变异的多样性、遍历性和随机性,增强算法全局搜索能力。通过多组算例对比,不仅验证所提算法求解多种车辆路径问题的有效性与稳定性,还验证了带时间窗下的多中心半开放同时送取货配送模式优于多中心闭合式同时送取货配送模式。研究成果不仅拓展了车辆路径类的模型,还为相关物流企业提供一种决策参考。 展开更多
关键词 车辆路径问题 多中心 同时送取货 时间窗 混沌变异头脑风暴算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部