期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于混合高斯过程模型的高光谱图像分类算法 被引量:4
1
作者 刘辉 白峰杉 《高校应用数学学报(A辑)》 CSCD 北大核心 2010年第4期379-385,共7页
提出了一种基于混合高斯过程模型的高光谱遥感图像分类算法,它不同于传统的基于多元统计的分类方法.为更好利用高光谱遥感图像的高谱分辨率特点,首先将函数数据分析的思想引进高光谱数据的分类问题,分类对象视为像元对应的谱线,故它们... 提出了一种基于混合高斯过程模型的高光谱遥感图像分类算法,它不同于传统的基于多元统计的分类方法.为更好利用高光谱遥感图像的高谱分辨率特点,首先将函数数据分析的思想引进高光谱数据的分类问题,分类对象视为像元对应的谱线,故它们是函数型数据.为了有效模拟地物在空间上的分片聚集特性,则将混合高斯分布模型推广到混合高斯过程模型并用于高光谱数据分类算法中.数值实验表明,混合高斯过程模型是处理函数型数据的有效方法. 展开更多
关键词 混合高斯过程模型 分类 函数数据分析 高光谱遥感图像
在线阅读 下载PDF
从高斯过程到高斯过程混合模型:研究与展望 被引量:17
2
作者 周亚同 陈子一 马尽文 《信号处理》 CSCD 北大核心 2016年第8期960-972,共13页
高斯过程(GP)模型是核学习方法与贝叶斯推理相结合的典范,现已成为机器学习领域的一个研究热点。作为对GP模型的拓展,高斯过程混合(MGP)模型具有更强大的学习能力和适应性。然而,目前关于GP和MGP模型的研究较为零散,尚缺少系统的分析与... 高斯过程(GP)模型是核学习方法与贝叶斯推理相结合的典范,现已成为机器学习领域的一个研究热点。作为对GP模型的拓展,高斯过程混合(MGP)模型具有更强大的学习能力和适应性。然而,目前关于GP和MGP模型的研究较为零散,尚缺少系统的分析与总结。本文首先对于GP模型的基本原理及其研究进展进行了深入地分析和讨论;然后将GP模型拓展至MGP模型,从多方面对MGP模型的研究现状和进展进行了深入地分析和讨论,并指出未来值得探索的研究方向和应用问题。 展开更多
关键词 高斯过程 高斯过程混合模型 机器学习 回归预测 聚类分析
在线阅读 下载PDF
高斯过程混合模型在含噪输入预测策略下的煤矿瓦斯浓度柔性预测 被引量:10
3
作者 李晓燕 李弢 马尽文 《信号处理》 CSCD 北大核心 2021年第11期2031-2040,共10页
高斯过程回归是机器学习中解决非线性回归的一种典型回归方法。然而,单一的高斯过程难以拟合非平稳、多模态的时序数据。另外,在实际应用中需要预测的输入数据会受到噪声的干扰。为了克服这些问题,本文提出了含噪输入预测策略下的高斯... 高斯过程回归是机器学习中解决非线性回归的一种典型回归方法。然而,单一的高斯过程难以拟合非平稳、多模态的时序数据。另外,在实际应用中需要预测的输入数据会受到噪声的干扰。为了克服这些问题,本文提出了含噪输入预测策略下的高斯过程混合回归预测方法(niMGP),并针对煤矿瓦斯浓度数据进行了参数学习和柔性预测。与其他传统回归方法相比,这种柔性预测方法是在测试输入数据具有噪声干扰的情况下进行预测,使其结果更为鲁棒和准确。本文首先通过模拟实验验证了在具有固定信噪比的测试输入数据上,高斯过程混合模型在含噪输入预测策略下的回归结果在稳定性上优于其传统预测策略下的回归结果。本文进一步选取松藻煤矿中打通一矿的333944号传感器获取的实际瓦斯浓度数据片段,对其进行了适当的数据增强之后,通过实际数据的实验进一步表明,高斯过程混合模型采用含噪输入预测策略在数据回归分析的预测上相比传统预测策略具有更好的稳定性。实际中还可以通过调节测试输入数据中噪声分布的方差来调节预测的灵敏度,达到分级预警的效果。 展开更多
关键词 高斯过程混合模型 含噪输入策略 瓦斯浓度预测 机器学习 噪声干扰
在线阅读 下载PDF
基于高斯过程混合模型的国债收益率预测 被引量:2
4
作者 曾鑫 赵龙波 马尽文 《信号处理》 CSCD 北大核心 2019年第5期831-836,共6页
债券分析的核心问题是发现偿还期限与到期收益率之间的关系,即利率期限结构,而实际上国债利率期限结构是最为重要和基本的模式。目前人们对于利率期限结构的分析主要采用经济理论模型和数量模型进行,但是这两种方法都难于对国债收益率... 债券分析的核心问题是发现偿还期限与到期收益率之间的关系,即利率期限结构,而实际上国债利率期限结构是最为重要和基本的模式。目前人们对于利率期限结构的分析主要采用经济理论模型和数量模型进行,但是这两种方法都难于对国债收益率进行有效的预测。基于高斯过程混合模型强大的数据拟合和分析能力,本文将其应用于国债收益率的建模和预测。本文采用国债收益率数据作为输出变量,筛选出对国债收益率影响最强的一组作用因子作为驱动或输入变量,然后利用高斯过程混合模型对数据进行学习和建模,并依此对国债收益率进行建模和分析。实验结果表明高斯过程混合模型能够更好的描述国债利率期限结构。相比于其他机器学习模型和算法,高斯过程混合模型在国债收益率的测试数据上获得了更好准确的预测结果。 展开更多
关键词 高斯过程混合模型 利率期限结构 国债收益率 参数学习 预测
在线阅读 下载PDF
基于高斯过程混合模型的瓦斯安全状态分类研究 被引量:1
5
作者 李弢 李晓燕 马尽文 《信号处理》 CSCD 北大核心 2021年第7期1198-1206,共9页
针对目前瓦斯浓度预测与瓦斯安全状态分类方法中主观性较强、超参数难以选取、解释性差、无法有效地利用样本之间时序信息等问题,本文提出了基于高斯过程混合模型的瓦斯浓度预测与安全状态分类方法。高斯过程是机器学习领域中解决非线... 针对目前瓦斯浓度预测与瓦斯安全状态分类方法中主观性较强、超参数难以选取、解释性差、无法有效地利用样本之间时序信息等问题,本文提出了基于高斯过程混合模型的瓦斯浓度预测与安全状态分类方法。高斯过程是机器学习领域中解决非线性回归问题的典型方法,能够有效地利用数据之间的相关性,常用于时间序列的建模与预测。然而,单个高斯过程存在着一定的局限性,难以对非平稳、多模态的数据进行有效地建模和回归分析。在高斯过程的基础上引入其混合模型,则可增强模型的表达能力,能够对有复杂结构的数据进行建模。我们将瓦斯安全状态根据风险由高至低分成红橙黄蓝四个等级,在每个风险等级上瓦斯浓度数据采用单个高斯过程进行建模。由于一般瓦斯浓度数据包含着各个风险等级的数据,高斯过程混合模型则可用于对整体数据进行建模和回归分析。根据对数据的参数学习结果,高斯过程混合模型便可自适应地得到每个时刻对应的风险等级,并在预测瓦斯浓度时对各个高斯过程分量的预测进行加权,得到更为鲁棒的预测结果。实验结果表明,基于高斯过程混合模型的方法可有效地预测瓦斯浓度、评估安全状态。 展开更多
关键词 瓦斯安全状态 瓦斯浓度预测 高斯过程混合模型 时间序列预测 机器学习
在线阅读 下载PDF
基于高斯过程混合模型的大气温湿度预测 被引量:11
6
作者 周亚同 赵翔宇 +1 位作者 何峰 石超君 《农业工程学报》 EI CAS CSCD 北大核心 2018年第5期219-226,共8页
温湿度预测在国民经济各领域有重要作用,实现温湿度精准预测可有效提高农业生产及保障行人安全,室内温湿度预测有助于植物健康生长,减少经济损失;室外温湿度预测对行人安全及航空等科研起保障作用。针对现有温湿度预测效果不佳且不能实... 温湿度预测在国民经济各领域有重要作用,实现温湿度精准预测可有效提高农业生产及保障行人安全,室内温湿度预测有助于植物健康生长,减少经济损失;室外温湿度预测对行人安全及航空等科研起保障作用。针对现有温湿度预测效果不佳且不能实现多模态预测,该文采用高斯过程混合(gaussian process mixture,GPM)模型进行大气温湿度多模态预测。另外为了提升模型学习效率,给GPM模型提出了的一种隐变量后验硬划分迭代学习算法。该算法采用一种新的近似策略,利用最大后验估计不断矫正样本划分,借助迭代学习实现样本最优分组。在用自相关函数和最大Lyapunov指数等解析评价温湿度序列基础上,将GPM模型与核回归(kernel-regression,K-R)、最小最大概率机回归(minimax probability machine regression,MPMR)、线性回归(linear-regression,L-R)、高斯过程(gaussian process,GP)等传统预测模型进行比较。结果表明GPM不仅能够实现多模态预测,而且预测准确率要明显优于其它传统模型。最终湿度预测最优结果RMSE=0.062 0、R^2=0.936 2,训练耗时为113.417 5 s;温度预测最优结果 RMSE=0.042 6、R^2=0.966 6,训练耗时为90.0049 s。由于GPM为无环境因子输入模型,因此该文的研究不仅对大气温湿度预测有促进作用,同时对室内及固体表面温湿度预测具有一定借鉴价值。 展开更多
关键词 温度 湿度 预测 高斯过程混合模型 机器学习
在线阅读 下载PDF
高斯过程混合模型应用于网络流量预测研究 被引量:13
7
作者 李松 周亚同 +2 位作者 池越 何静飞 张世立 《计算机工程与应用》 CSCD 北大核心 2020年第5期186-193,共8页
精准的网络流量预测可以避免网络崩溃,保证网络的流畅度。将高斯过程混合(GPM)模型应用于网络流量的多模态预测。对两段不同地区的网络流量序列进行多模态分析,将之通过归一化和相空间重构后生成样本集并输入GPM模型。采用分类迭代学习... 精准的网络流量预测可以避免网络崩溃,保证网络的流畅度。将高斯过程混合(GPM)模型应用于网络流量的多模态预测。对两段不同地区的网络流量序列进行多模态分析,将之通过归一化和相空间重构后生成样本集并输入GPM模型。采用分类迭代学习算法,利用后验概率最大化和似然函数实现模型参数学习。将GPM模型与支持向量机(SVM)、核回归(KR)、最小最大概率机回归(MPMR)和高斯过程(GP)等模型比较。通过对比均方根误差(RMSE)和决定系数(R^2)评价指标,GPM模型的预测准确度要优于其他四种模型。说明GPM模型能够很好应用于网络流量预测,可以为网络管理者分配网络资源提供参考。 展开更多
关键词 网络流量 预测 高斯过程混合模型 多模态
在线阅读 下载PDF
混沌时间序列的高斯过程混合模型预测 被引量:2
8
作者 冯振杰 樊煜 《系统仿真学报》 CAS CSCD 北大核心 2019年第7期1387-1396,共10页
高斯过程混合(Gaussian Processes Mixture,GPM)模型现有的学习算法如马尔科夫链蒙特卡洛法、变分法或留一法等,计算复杂度偏高,提出一种隐变量后验硬划分迭代学习算法,简化模型的学习过程,基于该算法将GPM模型用于混沌时间序列预测,并... 高斯过程混合(Gaussian Processes Mixture,GPM)模型现有的学习算法如马尔科夫链蒙特卡洛法、变分法或留一法等,计算复杂度偏高,提出一种隐变量后验硬划分迭代学习算法,简化模型的学习过程,基于该算法将GPM模型用于混沌时间序列预测,并讨论嵌入维、时间延迟、学习样本和测试样本数目等参数对预测性能的影响。实验结果表明,GPM模型预测精度高于支持向量机(Support Vector Machine,SVM)、高斯过程(Gaussian Process,GP)和径向基(Radical Basis Function,RBF)网络,学习速度介于RBF网络、GP和SVM之间。 展开更多
关键词 高斯过程混合模型 混沌时间序列 预测 机器学习
在线阅读 下载PDF
GPFR混合模型的动态模型选择算法 被引量:1
9
作者 赵龙波 马尽文 《信号处理》 CSCD 北大核心 2019年第5期786-794,共9页
作为一种有效的数据建模和分析工具,高斯过程混合(MGP)模型被广泛地应用于时间序列的分析与预测,并成为一种新的机器学习模型。在传统的MGP模型中,高斯过程(GP)的均值被假设为零,这给其应用带来了很大的局限性,因此人们提出了可进行均... 作为一种有效的数据建模和分析工具,高斯过程混合(MGP)模型被广泛地应用于时间序列的分析与预测,并成为一种新的机器学习模型。在传统的MGP模型中,高斯过程(GP)的均值被假设为零,这给其应用带来了很大的局限性,因此人们提出了可进行均值函数学习的高斯过程函数回归(GPFR)模型及其混合模型(MGPFR)进行更为精细的数据建模。与MGP模型一样,MGPFR模型同样存在着模型选择的问题。为了解决MGPFR模型的模型选择问题,本文将同步平衡准则进行了推广,并提出了相应的模型选择和动态模型选择算法,并通过实验发现了惩罚项系数的合理区间。实验表明,这些算法在模型选择和预测上均有很好表现,并且能够有效地应用于曲线聚类。 展开更多
关键词 高斯过程混合模型 高斯过程函数回归混合模型 动态模型选择算法 同步平衡准则
在线阅读 下载PDF
基于VMD-DESN-MSGP模型的超短期光伏功率预测 被引量:53
10
作者 王粟 江鑫 +1 位作者 曾亮 常雨芳 《电网技术》 EI CSCD 北大核心 2020年第3期917-926,共10页
光伏功率时间序列受到多种因素影响,呈现出高度的随机性和波动性。针对光伏功率时间序列可预测性低的问题,提出了一种结合变分模态分解(variationalmodal decomposition,VMD)、深度回声状态网络(deepechostate network,DESN)和稀疏高斯... 光伏功率时间序列受到多种因素影响,呈现出高度的随机性和波动性。针对光伏功率时间序列可预测性低的问题,提出了一种结合变分模态分解(variationalmodal decomposition,VMD)、深度回声状态网络(deepechostate network,DESN)和稀疏高斯混合过程专家模型(mixtureof sparse gaussian process experts model,MSGP)的超短期光伏功率预测方法。首先采用VMD将光伏功率时间序列分解为不同的模态,降低数据的非平稳性;为提高模型在超短尺度时序的预测能力,对各模态分别建立DESN预测模型,将各模态预测结果进行求和重构;为进一步提高模型预测精度,对误差的特性进行分析,采用MSGP对预测误差进行补偿;最后将误差的预测值与原功率的预测值相叠加作为最终预测结果。仿真结果表明,该方法在光伏功率时序预测中的效果比传统预测模型更好,有效提高了超短期光伏功率时间序列预测的准确性。 展开更多
关键词 光伏功率预测 时间序列 变分模态分解 深度回声状态网络 稀疏高斯混合过程专家模型
在线阅读 下载PDF
基于风电预测误差聚类的分布鲁棒含储能机组组合 被引量:27
11
作者 施云辉 王橹裕 +1 位作者 陈玮 郭创新 《电力系统自动化》 EI CSCD 北大核心 2019年第22期3-12,121,共11页
为应对风电不确定性给电力系统调度带来的难题,提出了一种基于风电预测误差聚类的分布鲁棒含储能机组组合模型。首先,基于狄利克雷过程高斯混合模型对风电预测误差进行聚类,建立了数据驱动的风电预测误差模糊集,并进一步建立了考虑风电... 为应对风电不确定性给电力系统调度带来的难题,提出了一种基于风电预测误差聚类的分布鲁棒含储能机组组合模型。首先,基于狄利克雷过程高斯混合模型对风电预测误差进行聚类,建立了数据驱动的风电预测误差模糊集,并进一步建立了考虑风电场间风电预测误差相关性的不确定集。接着提出了考虑储能的分布鲁棒机组组合模型,建立了考虑储能系统循环老化成本的目标函数。针对该模型min-max-max-min的4层结构,将其分解为两阶段问题,在第1阶段中引入运行域变量、爬坡事件约束与储能能量约束,以消去第2阶段中的动态约束,并将第2阶段问题通过KKT条件转化为单层问题,然后采用列约束生成算法对两阶段问题进行求解。最后,通过IEEE 6节点以及IEEE 118节点的算例分析,证明了所提模型的鲁棒性和有效性。 展开更多
关键词 狄利克雷过程高斯混合模型 分布鲁棒优化 非参数贝叶斯 锂电池储能 风电不确定性 运行域
在线阅读 下载PDF
基于变分贝叶斯推断的DPGMM风电机组异常数据识别研究 被引量:6
12
作者 甘雨 郭鹏 林立栋 《动力工程学报》 CAS CSCD 北大核心 2023年第7期885-892,共8页
为了准确识别和剔除风电机组在实际运行过程中产生的异常数据,以便为功率预测等工作提供有效的数据支持,通过分析风电机组运行数据散点在风速-功率(v-P)坐标系中的分布特征,提出了基于变分贝叶斯推断的狄利克雷过程高斯混合模型异常数... 为了准确识别和剔除风电机组在实际运行过程中产生的异常数据,以便为功率预测等工作提供有效的数据支持,通过分析风电机组运行数据散点在风速-功率(v-P)坐标系中的分布特征,提出了基于变分贝叶斯推断的狄利克雷过程高斯混合模型异常数据识别方法。将试验机组E17实测数据散点沿水平功率方向以一定间隔划分区间,采用能自适应确定最佳分量个数的狄利克雷过程高斯混合模型对每一个功率区间内的数据散点进行聚类,结合各高斯分量置信椭圆参数及数据散点在v-P坐标系中的分布特征,对试验机组E17各功率区间内的高斯分量及其聚类散点进行异常标识。结果表明:该模型克服了传统高斯混合模型需要人为确定分量个数的缺点,能够对风电机组异常数据进行准确识别。 展开更多
关键词 风电机组 异常数据识别 狄利克雷过程高斯混合模型 变分贝叶斯推断
在线阅读 下载PDF
考虑高阻接地的配电网故障检测方法 被引量:21
13
作者 刘硕 刘灏 +2 位作者 毕天姝 于希娟 江阳 《电网技术》 EI CSCD 北大核心 2023年第8期3438-3447,共10页
实际配电系统中存在一些高阻态的故障,表现为微弱、非线性、随机和不稳定的现象,这对于故障的检测提出了更高的挑战。为此,该文提出一种考虑高阻接地的配电网故障检测方法。首先,通过分析大量的现场波形数据,得到了故障发生前后的波形... 实际配电系统中存在一些高阻态的故障,表现为微弱、非线性、随机和不稳定的现象,这对于故障的检测提出了更高的挑战。为此,该文提出一种考虑高阻接地的配电网故障检测方法。首先,通过分析大量的现场波形数据,得到了故障发生前后的波形特性。并且,为减弱噪声的干扰,对现场数据进行预处理。进一步,提出了一种基于数学形态学的故障特征增强方法,以放大故障在发生时刻的响应,同时减弱故障暂态过程以及正常运行状态下的畸变响应。接着,提出了一种基于狄利克雷过程高斯混合模型的故障时刻检测方法,通过对增强后的故障特征进行自适应判断,实现故障时刻的快速准确检测。基于实际配电网现场数据,进一步验证了该文所提方法的优势。实验结果表明,所提方法通用性强,仅需要配电网零序电流数据。同时,该文方法具有较高的检测精度和检测效率,满足配电网的可靠性和安全性要求。 展开更多
关键词 故障检测 配电网 高阻故障 数学形态学 狄利克雷过程高斯混合模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部