针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行...针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行性规则和改进的epsilon约束处理方法进行更新。在第一阶段,主种群和副种群分别探索约束Pareto前沿(CPF)与无约束Pareto前沿(UPF),从而获取UPF和CPF的位置信息;在第二阶段,设计一种分类方法,根据UPF与CPF的位置对CMOP进行分类,从而对不同类型的CMOP执行特定的进化策略;此外,提出一种随机扰动策略,在副种群进化到CPF附近时,对它进行随机扰动以产生一些位于CPF上的个体,从而促进主种群在CPF上的收敛与分布。把所提算法与6个具有代表性的算法:CMOES(Constrained Multi-objective Optimization based on Even Search)、dp-ACS(dual-population evolutionary algorithm based on Adaptive Constraint Strength)、c-DPEA(DualPopulation based Evolutionary Algorithm for constrained multi-objective optimization)、CAEAD(Constrained Evolutionary Algorithm based on Alternative Evolution and Degeneration)、BiCo(evolutionary algorithm with Bidirectional Coevolution)和DDCMOEA(Dual-stage Dual-population Evolutionary Algorithm for Constrained Multiobjective Optimization)在LIRCMOP和DASCMOP两个测试集上进行实验比较。实验结果表明,DPDSEA在23个问题中取得了15个最优反转世代距离(IGD)值和12个最优超体积(HV)值,展现了DPDSEA在处理复杂CMOP时显著的性能优势。展开更多
现实工业生产应用中存在大量的混合变量优化问题,这类问题的决策变量既包含连续变量,又包含离散变量。由于决策变量为混合类型,导致问题的决策空间变得不规则,采用已有的方法很难进行有效求解。引入协同进化策略,提出一种基于竞争式协...现实工业生产应用中存在大量的混合变量优化问题,这类问题的决策变量既包含连续变量,又包含离散变量。由于决策变量为混合类型,导致问题的决策空间变得不规则,采用已有的方法很难进行有效求解。引入协同进化策略,提出一种基于竞争式协同进化的混合变量粒子群优化算法(competitive coevolution based PSO,CCPSO)。设计基于容忍度的搜索方向调整机制来判断粒子的进化状态,从而自适应地调整粒子的搜索方向,避免陷入局部最优,平衡了种群的收敛性和多样性;引入基于竞争式协同进化的学习对象生成机制,在检测到粒子进化停滞时为每个粒子生成新的学习对象,从而推动粒子的进一步搜索,提高了种群的多样性;采用基于竞争学习的预测策略为粒子选择合适的学习对象,充分利用了新旧学习对象的学习潜力,保证了算法的收敛速度。实验结果表明:相比其他主流的混合变量优化算法,CCPSO可以获得更优的结果。展开更多
针对生物地理学优化算法(biogeography based optimization,BBO)容易陷入局部最优解的缺点,提出一种基于微分进化(differential evolution,DE)改进BBO算法的混合生物地理学(BBO-DE)优化算法。通过有机结合BBO算法的利用能力和DE算法的...针对生物地理学优化算法(biogeography based optimization,BBO)容易陷入局部最优解的缺点,提出一种基于微分进化(differential evolution,DE)改进BBO算法的混合生物地理学(BBO-DE)优化算法。通过有机结合BBO算法的利用能力和DE算法的搜索能力,实现利用能力与搜索能力的平衡;引入基于可行性的约束处理机制,解决传统BBO算法无法求解约束优化的问题。通过选定的8个标准测试函数对改进算法进行仿真测试,测试结果验证了改进算法的可行性和有效性,与基本BBO和DE算法相比,其在最终解的质量和收敛速度上具有明显优势。展开更多
文摘针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行性规则和改进的epsilon约束处理方法进行更新。在第一阶段,主种群和副种群分别探索约束Pareto前沿(CPF)与无约束Pareto前沿(UPF),从而获取UPF和CPF的位置信息;在第二阶段,设计一种分类方法,根据UPF与CPF的位置对CMOP进行分类,从而对不同类型的CMOP执行特定的进化策略;此外,提出一种随机扰动策略,在副种群进化到CPF附近时,对它进行随机扰动以产生一些位于CPF上的个体,从而促进主种群在CPF上的收敛与分布。把所提算法与6个具有代表性的算法:CMOES(Constrained Multi-objective Optimization based on Even Search)、dp-ACS(dual-population evolutionary algorithm based on Adaptive Constraint Strength)、c-DPEA(DualPopulation based Evolutionary Algorithm for constrained multi-objective optimization)、CAEAD(Constrained Evolutionary Algorithm based on Alternative Evolution and Degeneration)、BiCo(evolutionary algorithm with Bidirectional Coevolution)和DDCMOEA(Dual-stage Dual-population Evolutionary Algorithm for Constrained Multiobjective Optimization)在LIRCMOP和DASCMOP两个测试集上进行实验比较。实验结果表明,DPDSEA在23个问题中取得了15个最优反转世代距离(IGD)值和12个最优超体积(HV)值,展现了DPDSEA在处理复杂CMOP时显著的性能优势。
文摘现实工业生产应用中存在大量的混合变量优化问题,这类问题的决策变量既包含连续变量,又包含离散变量。由于决策变量为混合类型,导致问题的决策空间变得不规则,采用已有的方法很难进行有效求解。引入协同进化策略,提出一种基于竞争式协同进化的混合变量粒子群优化算法(competitive coevolution based PSO,CCPSO)。设计基于容忍度的搜索方向调整机制来判断粒子的进化状态,从而自适应地调整粒子的搜索方向,避免陷入局部最优,平衡了种群的收敛性和多样性;引入基于竞争式协同进化的学习对象生成机制,在检测到粒子进化停滞时为每个粒子生成新的学习对象,从而推动粒子的进一步搜索,提高了种群的多样性;采用基于竞争学习的预测策略为粒子选择合适的学习对象,充分利用了新旧学习对象的学习潜力,保证了算法的收敛速度。实验结果表明:相比其他主流的混合变量优化算法,CCPSO可以获得更优的结果。
文摘针对生物地理学优化算法(biogeography based optimization,BBO)容易陷入局部最优解的缺点,提出一种基于微分进化(differential evolution,DE)改进BBO算法的混合生物地理学(BBO-DE)优化算法。通过有机结合BBO算法的利用能力和DE算法的搜索能力,实现利用能力与搜索能力的平衡;引入基于可行性的约束处理机制,解决传统BBO算法无法求解约束优化的问题。通过选定的8个标准测试函数对改进算法进行仿真测试,测试结果验证了改进算法的可行性和有效性,与基本BBO和DE算法相比,其在最终解的质量和收敛速度上具有明显优势。