期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
混合神经网络模型用于煤焦气化过程的模拟 被引量:1
1
作者 吴诗勇 张晓 +2 位作者 顾菁 吴幼青 高晋生 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期197-201,共5页
以煤焦气化反应模型为基础,结合BP神经网络参数估计器,建立了用于模拟煤焦气化过程的混合神经网络模型。结果表明该混合神经网络模型能很好地描述煤焦的气化过程,可以得到在实验过程中无法测得的2个参数,即:在煤焦中具有活性的碳与总碳... 以煤焦气化反应模型为基础,结合BP神经网络参数估计器,建立了用于模拟煤焦气化过程的混合神经网络模型。结果表明该混合神经网络模型能很好地描述煤焦的气化过程,可以得到在实验过程中无法测得的2个参数,即:在煤焦中具有活性的碳与总碳的比值A和具有活性碳的单位质量反应速率Rr。 展开更多
关键词 混合神经网络模型 煤焦 气化过程 模拟
在线阅读 下载PDF
基于混合神经网络(GANN)的沥青路面使用性能预测模型 被引量:5
2
作者 俞竞伟 傅睿 +1 位作者 李雄威 王新军 《桂林理工大学学报》 CAS 北大核心 2016年第3期521-525,共5页
针对GM模型要求的样本点少、不必有较好的分布规律,且计算量少、操作简便,而BP神经网络可以反馈校正输出的误差,具有并行计算、分布式信息存储、强容错力、自适应学习功能等特点,将GM(1,1)模型与BP神经网络模型相结合,建立了混合神经网... 针对GM模型要求的样本点少、不必有较好的分布规律,且计算量少、操作简便,而BP神经网络可以反馈校正输出的误差,具有并行计算、分布式信息存储、强容错力、自适应学习功能等特点,将GM(1,1)模型与BP神经网络模型相结合,建立了混合神经网络预测模型,并结合实例进行了检验性预测。结果表明:混合神经网络模型在预测精度方面优于传统灰色模型。该模型的算法概念明确、计算简便,有较高的拟合和预测精度,具有良好的应用前景。 展开更多
关键词 沥青路面 使用性能 GM模型 人工神经网络 混合神经网络模型
在线阅读 下载PDF
基于神经网络及时间序列混合模型的桥梁健康监测系统缺失数据填补 被引量:3
3
作者 昝昕武 平春蕾 符欲梅 《重庆理工大学学报(自然科学)》 CAS 2011年第4期79-85,共7页
列举了实际桥梁健康监测系统中数据缺失的几种形式,根据桥梁健康监测系统中监测数据是时间序列集的特点,以及神经网络强大的映射能力,利用神经网络及时间序列混合模型的方法来填补缺失数据,并将该方法与时间序列法的填补结果进行对比,... 列举了实际桥梁健康监测系统中数据缺失的几种形式,根据桥梁健康监测系统中监测数据是时间序列集的特点,以及神经网络强大的映射能力,利用神经网络及时间序列混合模型的方法来填补缺失数据,并将该方法与时间序列法的填补结果进行对比,结果表明该方法处理缺失数据的误差较低。 展开更多
关键词 缺失数据 填补 神经网络及时间序列混合模型 桥梁健康监测系统
在线阅读 下载PDF
中国城市能源电力转型发展战略影响因素量化模型及分析 被引量:3
4
作者 黄子桓 林伟芳 《电网技术》 EI CSCD 北大核心 2024年第10期4106-4114,I0047,I0048,I0046,共12页
随着国家碳达峰、碳中和目标的提出,作为二氧化碳主要排放源的城市能源电力消耗,其转型面临着极大的挑战。由于影响因素的指标计算存在极大的主观差异,该文根据中国296个地级市和4个直辖市的面板数据,基于信息熵提出了中国城市能源电力... 随着国家碳达峰、碳中和目标的提出,作为二氧化碳主要排放源的城市能源电力消耗,其转型面临着极大的挑战。由于影响因素的指标计算存在极大的主观差异,该文根据中国296个地级市和4个直辖市的面板数据,基于信息熵提出了中国城市能源电力转型的影响因素指标体系。为解决传统线性统计学模型对城市能源电力转型影响因素的解释存在局限性的问题,该文提出了“基于SHAP值神经网络-个体随机效应-时间固定效应的混合模型”,分析了中国城市能源电力转型战略影响因素,阐述了中国城市能源电力转型的特征,并分析了不同区域、不同发展规模等级的城市能源电力转型影响因素的差异性特征和产生原因,提出了有针对性的发展战略建议,为能源电力转型战略的制定提供了理论基础。 展开更多
关键词 能源电力转型 个体因素随机效应 时间因素固定效应混合模型 混合神经网络模型 SHAP值
在线阅读 下载PDF
基于CNN和LSTM的机器学习模型在测井岩性识别的应用 被引量:2
5
作者 张凤博 马雪玲 +4 位作者 董珍珍 邹路 王茜 李伟荣 吴磊 《西安石油大学学报(自然科学版)》 CAS 北大核心 2024年第5期96-103,133,共9页
在油气田勘探和开发中,测井解释是表征储层物性参数和评价油气储量的重要手段之一。其中,岩性识别是测井解释的主要任务。针对用于储层岩性识别的机器学习方法普遍存在参数优化难、训练时间长、容易过拟合等问题,导致测井解释精度低及... 在油气田勘探和开发中,测井解释是表征储层物性参数和评价油气储量的重要手段之一。其中,岩性识别是测井解释的主要任务。针对用于储层岩性识别的机器学习方法普遍存在参数优化难、训练时间长、容易过拟合等问题,导致测井解释精度低及岩性相近易混淆等。本文将卷积神经网络(CNN)有利于特征提取的优点与长短期记忆神经网络(LSTM)可考虑测井曲线随深度变化的趋势性信息的优点相结合,提出CNN-LSTM混合神经网络构建测井数据与岩性类别之间的非线性模型,并采用遗传算法(GA)优化混合神经网络模型的超参数,提高识别效率。基于4069组样本数据评估了该混合模型的性能。研究结果表明,与传统的机器学习方法相比,CNN-LSTM-GA混合神经网络优化模型有效地克服了储层岩性识别研究中的问题,取得更好的岩性识别效果,对油藏精细描述和储量评价具有一定的实用价值。 展开更多
关键词 岩性识别 卷积神经网络 长短期记忆网络 遗传算法 混合神经网络模型
在线阅读 下载PDF
CBi_AT:基于字符级和单词级的恶意URL检测
6
作者 郭应政 袁建廷 钱育蓉 《计算机应用与软件》 北大核心 2025年第5期332-340,共9页
针对恶意URL的高效检测问题,目前基于黑名单的检测方法时效性差且适应性弱,基于传统机器学习的检测方法效率和准确率较低。该文充分考虑URL的语义含义和时序特征,设计一种混合神经网络模型(CBi_AT),同时从字符级和单词级水平处理URL,有... 针对恶意URL的高效检测问题,目前基于黑名单的检测方法时效性差且适应性弱,基于传统机器学习的检测方法效率和准确率较低。该文充分考虑URL的语义含义和时序特征,设计一种混合神经网络模型(CBi_AT),同时从字符级和单词级水平处理URL,有效地捕获URL字符串的语义含义和时序特征,并引入多组注意力机制,抽取URL数据之间的关联性和依赖关系。实验结果表明,该混合神经网络模型能够高效检测恶意URL,可达到99.86%的准确率和99.85%的F1值。 展开更多
关键词 网络安全 恶意URL 混合神经网络模型 注意力机制
在线阅读 下载PDF
一种高精度LSTM-FC大气污染物浓度预测模型 被引量:5
7
作者 刘梦炀 武利娟 +3 位作者 梁慧 段旭磊 刘尚卿 高一波 《计算机科学》 CSCD 北大核心 2021年第S01期184-189,共6页
大气污染已经严重影响到人们的生活和健康,大气治理势在必行,探究大气污染物浓度变化的规律,实现污染物浓度预测,对指导大气治理工作具有重要意义。文中构建了一种基于长短期记忆神经网络(Long Short-Term Memory,LSTM)和全连接神经网络... 大气污染已经严重影响到人们的生活和健康,大气治理势在必行,探究大气污染物浓度变化的规律,实现污染物浓度预测,对指导大气治理工作具有重要意义。文中构建了一种基于长短期记忆神经网络(Long Short-Term Memory,LSTM)和全连接神经网络(Full Connected,FC)的混合神经网络模型,并提出了数据桶划分的训练方式来解决由于训练数据与预测数据存在较长时间间隔导致精度下降的问题,进而实现大气污染物浓度的预测。该模型具有较好的通用性和精度,充分结合了长短期记忆神经网络和全连接神经网络的优点,能够在多种污染物数据上实现精确预测。以天津市2013-2019年大气污染物数据实现模型的训练和预测,结果表明,混合神经网络模型在PM_(2.5),PM_(10),NO_(2),SO_(2),O_(3),CO 6种污染物浓度的预测上均可以达到R2>0.90,平均百分误差小于15%的效果,LSTM-FC模型在大气污染物预测中具有明显的优势,具有较高的实用价值。 展开更多
关键词 混合神经网络模型 长短期记忆神经网络 全连接神经网络 污染物浓度预测 多维度特征融合
在线阅读 下载PDF
基于CNN-BiGRU-NN模型的短期负荷预测方法 被引量:43
8
作者 曾囿钧 肖先勇 +1 位作者 徐方维 郑林 《中国电力》 CSCD 北大核心 2021年第9期17-23,共7页
为充分挖掘蕴含在大量采集数据中的有效信息,提高短期负荷预测精度,提出一种基于卷积神经网络(CNN)和双向门控循环单元(BiGRU)、全连接神经网络(NN)的混合模型的短期负荷预测方法,将海量的历史负荷数据、气象信息、日期信息按时间滑动... 为充分挖掘蕴含在大量采集数据中的有效信息,提高短期负荷预测精度,提出一种基于卷积神经网络(CNN)和双向门控循环单元(BiGRU)、全连接神经网络(NN)的混合模型的短期负荷预测方法,将海量的历史负荷数据、气象信息、日期信息按时间滑动窗口构造特征图作为输入,先利用CNN提取特征图中的有效信息,构造特征向量,再将特征向量作为BiGRU-NN网络的输入,采用BiGRU-NN网络进行短期负荷预测。以2016年举办的全国第九届电工数学建模竞赛试题A题中的负荷数据作为实际算例,实验结果表明:该方法与DNN神经网络、GRU神经网络、CNN-LSTM神经网络短期负荷预测法相比,有更高的预测精度。 展开更多
关键词 电力系统 短期负荷预测 卷积神经网络 双向门控循环单元 卷积神经网络-双向门控循环单元神经网络混合模型
在线阅读 下载PDF
基于小波变换与BiGRU-NN模型的短期负荷预测方法 被引量:12
9
作者 曾囿钧 肖先勇 徐方维 《电测与仪表》 北大核心 2023年第6期103-109,共7页
为更好地挖掘大量采集数据蕴含的有效信息,提高短期负荷预测精度,文中提出一种基于小波变换与双向门控循环单元(BiGRU)、全连接神经网络(NN)混合模型的短期负荷预测方法。文章利用小波变换将负荷特征数据分解为高频数据以及低频数据,再... 为更好地挖掘大量采集数据蕴含的有效信息,提高短期负荷预测精度,文中提出一种基于小波变换与双向门控循环单元(BiGRU)、全连接神经网络(NN)混合模型的短期负荷预测方法。文章利用小波变换将负荷特征数据分解为高频数据以及低频数据,再分别建立高频混合神经网络以及低频混合神经网络模型进行预测。在混合神经网络模型中,将负荷特征数据作为BiGRU-NN网络的输入,利用BiGRU-NN网络学习负荷非线性以及时序性特征,以此进行短期负荷预测。文中以丹麦东部地区的负荷数据作为算例,实验结果表明,该方法与GRU神经网络、DNN神经网络、CNN-LSTM神经网络相比,具有更高的预测精度。 展开更多
关键词 电力系统 短期负荷预测 小波变换 双向门控循环单元 双向门控循环单元-全连接神经网络混合模型
在线阅读 下载PDF
基于语谱图提取深度空间注意特征的语音情感识别算法 被引量:6
10
作者 王金华 应娜 +2 位作者 朱辰都 刘兆森 蔡哲栋 《电信科学》 2019年第7期100-108,共9页
从语音情感特征的提取和分类建模出发,以混合卷积神经网络模型为基础,改进特征提取中的Itti模型,包括:增加通过局部二值模式提取的纹理特征;结合听觉敏感度权重提取情感强相关特征。然后提出通过特征约束条件提取标定权重特征的约束挤... 从语音情感特征的提取和分类建模出发,以混合卷积神经网络模型为基础,改进特征提取中的Itti模型,包括:增加通过局部二值模式提取的纹理特征;结合听觉敏感度权重提取情感强相关特征。然后提出通过特征约束条件提取标定权重特征的约束挤压和激励网络结构;最后形成以VGGnet和长短时记忆网络混合网络为基础的微调模型,进一步提升了情感表征能力。通过在自然情感数据库和柏林德语数据库上进行验证,该模型在情感识别率上有明显的上升,相较于基准模型提升了8.43%,同时对比了本模型在自然数据库(FAU-AEC)和柏林数据库(EMO-DB)上的识别效果,实验结果证明模型具有良好的泛化性。 展开更多
关键词 情感识别 深度混合神经网络模型 视觉注意机制
在线阅读 下载PDF
面向室内服务的中文语音指令深层信息解析系统 被引量:2
11
作者 孔令富 高胜男 吴培良 《高技术通讯》 CAS CSCD 北大核心 2014年第11期1101-1107,共7页
针对室内服务机器人的人机交互问题,对中文语音指令进行了深入研究,提出了一种基于概率/神经网络混合模型的深层信息解析系统。该系统由指令解析模块和深层信息提取模块组成,前者基于概率模型解析语音指令的有效信息,后者依据家庭环境... 针对室内服务机器人的人机交互问题,对中文语音指令进行了深入研究,提出了一种基于概率/神经网络混合模型的深层信息解析系统。该系统由指令解析模块和深层信息提取模块组成,前者基于概率模型解析语音指令的有效信息,后者依据家庭环境神经网络模型,将有效信息中的服务对象或目标对象作为已知条件提取指令深层信息,旨在将指令所蕴含的深层信息显性化。构建了一般家庭条件下的实验环境进行了仿真实验,仿真数据验证了指令解析模块和深层信息提取模块的可行性;选取两类典型结构的中文语音指令,在该系统上进行深层信息解析实验,提取了准确的有效信息和深层信息。 展开更多
关键词 概率/神经网络混合模型 指令解析模块 有效信息 深层信息提取模块 深层信息
在线阅读 下载PDF
考虑不确定性量化的质子交换膜燃料电池剩余使用寿命混合预测
12
作者 余晓然 谢长君 +2 位作者 杨扬 朱文超 郭冰新 《中国电机工程学报》 2025年第17期6804-6816,I0016,共14页
老化模型是评估质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)健康状态(state of health,SoH)和剩余使用寿命(remaining useful life,RUL)的关键,然而,其因诸多原因导致的不确定性降低了模型精度和可信度。因此,提出... 老化模型是评估质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)健康状态(state of health,SoH)和剩余使用寿命(remaining useful life,RUL)的关键,然而,其因诸多原因导致的不确定性降低了模型精度和可信度。因此,提出一种模型不确定度和SoH同时量化(model uncertainty and SoH simultaneous quantification,MUSQ)算法,用于指导和修正卷积神经网络-长短期记忆(convolutional neural networks-long short-term memory,CNN-LSTM)神经网络混合模型的长期预测,构建全新的RUL混合预测框架。采用动态负载循环耐久性实验数据,将该混合预测方法与扩展卡尔曼滤波算法、自适应扩展卡尔曼滤波算法、MUSQ算法、LSTM神经网络、CNN-LSTM混合模型等进行对比,该方法具有最优的长期预测性能和RUL估计精度。在负载电流为14.85 A的工况下,该方法累计误差分别降低49.64%、61.33%、30.65%、57.00%和52.90%。 展开更多
关键词 质子交换膜燃料电池(PEMFC) 模型不确定性 卷积神经网络-长短期记忆(CNN-LSTM)神经网络混合模型 剩余使用寿命 混合预测
在线阅读 下载PDF
Hybrid optimization model of product concepts
13
作者 薛立华 李永华 《Journal of Central South University of Technology》 EI 2006年第1期105-109,共5页
Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating... Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating its concepts was proposed, viz. an improved adaptive genetic algorithm was applied to explore the excavator concepts in the searching space of conceptual design, and a neural network was used to evaluate the fitness of the population. The optimization of generating concepts was finished through the "evolution - evaluation" iteration. The results show that by using the hybrid optimization model, not only the fitness evaluation and constraint conditions are well processed, but also the search precision and convergence speed of the optimization process are greatly improved. An example is presented to demonstrate the advantages of the orooosed method and associated algorithms. 展开更多
关键词 conceptual design morphological matrix genetic algorithm neural network hybrid optimization model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部