期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
混合神经网络模型用于煤焦气化过程的模拟 被引量:1
1
作者 吴诗勇 张晓 +2 位作者 顾菁 吴幼青 高晋生 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期197-201,共5页
以煤焦气化反应模型为基础,结合BP神经网络参数估计器,建立了用于模拟煤焦气化过程的混合神经网络模型。结果表明该混合神经网络模型能很好地描述煤焦的气化过程,可以得到在实验过程中无法测得的2个参数,即:在煤焦中具有活性的碳与总碳... 以煤焦气化反应模型为基础,结合BP神经网络参数估计器,建立了用于模拟煤焦气化过程的混合神经网络模型。结果表明该混合神经网络模型能很好地描述煤焦的气化过程,可以得到在实验过程中无法测得的2个参数,即:在煤焦中具有活性的碳与总碳的比值A和具有活性碳的单位质量反应速率Rr。 展开更多
关键词 混合神经网络模型 煤焦 气化过程 模拟
在线阅读 下载PDF
基于混合神经网络(GANN)的沥青路面使用性能预测模型 被引量:5
2
作者 俞竞伟 傅睿 +1 位作者 李雄威 王新军 《桂林理工大学学报》 CAS 北大核心 2016年第3期521-525,共5页
针对GM模型要求的样本点少、不必有较好的分布规律,且计算量少、操作简便,而BP神经网络可以反馈校正输出的误差,具有并行计算、分布式信息存储、强容错力、自适应学习功能等特点,将GM(1,1)模型与BP神经网络模型相结合,建立了混合神经网... 针对GM模型要求的样本点少、不必有较好的分布规律,且计算量少、操作简便,而BP神经网络可以反馈校正输出的误差,具有并行计算、分布式信息存储、强容错力、自适应学习功能等特点,将GM(1,1)模型与BP神经网络模型相结合,建立了混合神经网络预测模型,并结合实例进行了检验性预测。结果表明:混合神经网络模型在预测精度方面优于传统灰色模型。该模型的算法概念明确、计算简便,有较高的拟合和预测精度,具有良好的应用前景。 展开更多
关键词 沥青路面 使用性能 GM模型 人工神经网络 混合神经网络模型
在线阅读 下载PDF
基于LSTM+Transformer的冻融循环作用下路基土永久变形预估模型
3
作者 张安顺 《中外公路》 2025年第1期67-72,共6页
为了准确预测冻融循环和交通荷载耦合作用下路基土的永久变形,该文在动三轴试验结果的基础上,提出了一种基于长短期记忆网络LSTM和Transformer的混合神经网络模型。该模型能够有效捕捉输入变量之间的时间依赖关系和复杂交互影响,从而能... 为了准确预测冻融循环和交通荷载耦合作用下路基土的永久变形,该文在动三轴试验结果的基础上,提出了一种基于长短期记忆网络LSTM和Transformer的混合神经网络模型。该模型能够有效捕捉输入变量之间的时间依赖关系和复杂交互影响,从而能够显著提高路基土永久变形预测的精度和泛化能力。结果表明:较高的围压提高了路基土的抗变形能力,但其永久变形行为仍受循环荷载幅值和冻融循环次数的影响。通过与传统经验回归模型的对比分析,验证了所提出的混合模型在处理非线性变形问题方面的优越性。由敏感性分析结果可知:围压和液限是影响路基土永久变形的主要因素。该结论可为季冻区耐久性路基建造提供参考与借鉴,并发现设计阶段应优选填料并设置防冻结构,运维阶段须控制超载现象。 展开更多
关键词 路基工程 永久变形 冻融循环 动三轴试验 混合神经网络模型
在线阅读 下载PDF
基于CNN和LSTM的机器学习模型在测井岩性识别的应用 被引量:1
4
作者 张凤博 马雪玲 +4 位作者 董珍珍 邹路 王茜 李伟荣 吴磊 《西安石油大学学报(自然科学版)》 CAS 北大核心 2024年第5期96-103,133,共9页
在油气田勘探和开发中,测井解释是表征储层物性参数和评价油气储量的重要手段之一。其中,岩性识别是测井解释的主要任务。针对用于储层岩性识别的机器学习方法普遍存在参数优化难、训练时间长、容易过拟合等问题,导致测井解释精度低及... 在油气田勘探和开发中,测井解释是表征储层物性参数和评价油气储量的重要手段之一。其中,岩性识别是测井解释的主要任务。针对用于储层岩性识别的机器学习方法普遍存在参数优化难、训练时间长、容易过拟合等问题,导致测井解释精度低及岩性相近易混淆等。本文将卷积神经网络(CNN)有利于特征提取的优点与长短期记忆神经网络(LSTM)可考虑测井曲线随深度变化的趋势性信息的优点相结合,提出CNN-LSTM混合神经网络构建测井数据与岩性类别之间的非线性模型,并采用遗传算法(GA)优化混合神经网络模型的超参数,提高识别效率。基于4069组样本数据评估了该混合模型的性能。研究结果表明,与传统的机器学习方法相比,CNN-LSTM-GA混合神经网络优化模型有效地克服了储层岩性识别研究中的问题,取得更好的岩性识别效果,对油藏精细描述和储量评价具有一定的实用价值。 展开更多
关键词 岩性识别 卷积神经网络 长短期记忆网络 遗传算法 混合神经网络模型
在线阅读 下载PDF
基于GM(1,1)和BP网络的港口吞吐量预测 被引量:5
5
作者 赵景丽 马建新 +1 位作者 吴兴伟 邓跃 《大连交通大学学报》 CAS 2013年第3期36-40,共5页
分析了灰色和人工神经网络预测方法的互补性,在此基础上提出了将灰色与人工神经网络结合的灰色-神经网络混合模型.分别采用GM(1,1)模型、BP网络模型和灰色-神经网络混合模型对某港口货物吞吐量进行预测并用实测数据验证.结果表明,灰色-... 分析了灰色和人工神经网络预测方法的互补性,在此基础上提出了将灰色与人工神经网络结合的灰色-神经网络混合模型.分别采用GM(1,1)模型、BP网络模型和灰色-神经网络混合模型对某港口货物吞吐量进行预测并用实测数据验证.结果表明,灰色-神经网络混合模型预测效果最佳. 展开更多
关键词 港口吞吐量预测 GM(1 1) BP网络 灰色-神经网络混合模型
在线阅读 下载PDF
有效防范信用卡欺诈的检测技术研究
6
作者 黄华杰 李成青 +2 位作者 朱杰 李沛园 陈欣怡 《中国信用卡》 2024年第10期90-94,共5页
近年来,机器学习模型在信用卡欺诈检测方面的应用日益加深,但受限于数据的敏感性和保密性,仍有较大提升空间。为实现更全面的个人客户画像,本研究创新性地引入反映个人经济状况、背景资料和交易信息的相关特征,针对信用卡交易中不平衡... 近年来,机器学习模型在信用卡欺诈检测方面的应用日益加深,但受限于数据的敏感性和保密性,仍有较大提升空间。为实现更全面的个人客户画像,本研究创新性地引入反映个人经济状况、背景资料和交易信息的相关特征,针对信用卡交易中不平衡数据和欺诈检测问题,提出一种面向个人客户身份信息和交易特征的基于聚类下采样技术的混合神经网络模型(Hybrid Neural Network with Clustering-based Undersam-pling technique on Identity and Transaction features,HNN-CUHIT)。 展开更多
关键词 信用卡交易 客户身份 交易特征 不平衡数据 交易信息 信用卡欺诈 混合神经网络模型 采样技术
在线阅读 下载PDF
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
7
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model
在线阅读 下载PDF
基于音频峭度的煤矿旋转机械滚动轴承故障预测方法 被引量:7
8
作者 汪磊 李敬兆 秦晓伟 《煤炭技术》 CAS 北大核心 2022年第2期173-176,共4页
滚动轴承作为煤矿旋转设备中至关重要的机械元件,对其早期故障进行快速有效的诊断与预测可保证矿山开采的稳定性。针对提升机等旋转设备滚动轴承,采用非接触式测量仪器采集轴承工作时的音频信号,通过预加重,分帧加窗及峭度计算提取声音... 滚动轴承作为煤矿旋转设备中至关重要的机械元件,对其早期故障进行快速有效的诊断与预测可保证矿山开采的稳定性。针对提升机等旋转设备滚动轴承,采用非接触式测量仪器采集轴承工作时的音频信号,通过预加重,分帧加窗及峭度计算提取声音信号的时域特征,并基于萤火虫算法优化的卷积-长短期记忆(CNN-LSTM)神经网络完成音频特征的输出预测。实验结果表明,设计的神经网络模型可对轴承音频的分帧峭度数据进行较为精确的预测拟合,在设定的峭度安全阈值下,该模型能实现滚动轴承早期故障的准确预知。 展开更多
关键词 煤矿旋转机械 分帧峭度 混合神经网络模型 萤火虫算法 故障预测
在线阅读 下载PDF
基于语谱图提取深度空间注意特征的语音情感识别算法 被引量:6
9
作者 王金华 应娜 +2 位作者 朱辰都 刘兆森 蔡哲栋 《电信科学》 2019年第7期100-108,共9页
从语音情感特征的提取和分类建模出发,以混合卷积神经网络模型为基础,改进特征提取中的Itti模型,包括:增加通过局部二值模式提取的纹理特征;结合听觉敏感度权重提取情感强相关特征。然后提出通过特征约束条件提取标定权重特征的约束挤... 从语音情感特征的提取和分类建模出发,以混合卷积神经网络模型为基础,改进特征提取中的Itti模型,包括:增加通过局部二值模式提取的纹理特征;结合听觉敏感度权重提取情感强相关特征。然后提出通过特征约束条件提取标定权重特征的约束挤压和激励网络结构;最后形成以VGGnet和长短时记忆网络混合网络为基础的微调模型,进一步提升了情感表征能力。通过在自然情感数据库和柏林德语数据库上进行验证,该模型在情感识别率上有明显的上升,相较于基准模型提升了8.43%,同时对比了本模型在自然数据库(FAU-AEC)和柏林数据库(EMO-DB)上的识别效果,实验结果证明模型具有良好的泛化性。 展开更多
关键词 情感识别 深度混合神经网络模型 视觉注意机制
在线阅读 下载PDF
面向室内服务的中文语音指令深层信息解析系统 被引量:2
10
作者 孔令富 高胜男 吴培良 《高技术通讯》 CAS CSCD 北大核心 2014年第11期1101-1107,共7页
针对室内服务机器人的人机交互问题,对中文语音指令进行了深入研究,提出了一种基于概率/神经网络混合模型的深层信息解析系统。该系统由指令解析模块和深层信息提取模块组成,前者基于概率模型解析语音指令的有效信息,后者依据家庭环境... 针对室内服务机器人的人机交互问题,对中文语音指令进行了深入研究,提出了一种基于概率/神经网络混合模型的深层信息解析系统。该系统由指令解析模块和深层信息提取模块组成,前者基于概率模型解析语音指令的有效信息,后者依据家庭环境神经网络模型,将有效信息中的服务对象或目标对象作为已知条件提取指令深层信息,旨在将指令所蕴含的深层信息显性化。构建了一般家庭条件下的实验环境进行了仿真实验,仿真数据验证了指令解析模块和深层信息提取模块的可行性;选取两类典型结构的中文语音指令,在该系统上进行深层信息解析实验,提取了准确的有效信息和深层信息。 展开更多
关键词 概率/神经网络混合模型 指令解析模块 有效信息 深层信息提取模块 深层信息
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部