期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
基于狄利克雷混合模型的刀具磨损量在线估计 被引量:8
1
作者 于劲松 时祎瑜 +1 位作者 梁爽 唐荻音 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第3期689-694,共6页
提出了一种基于狄利克雷混合模型的刀具磨损状态监测和磨损量估计的新方法。该方法将刀具磨损过程描述为磨损量的累积过程,通过对磨损增量的连续估计获得刀具当前的磨损量估计。首先对原始力信号进行特征提取,接着在不确定磨损增量状态... 提出了一种基于狄利克雷混合模型的刀具磨损状态监测和磨损量估计的新方法。该方法将刀具磨损过程描述为磨损量的累积过程,通过对磨损增量的连续估计获得刀具当前的磨损量估计。首先对原始力信号进行特征提取,接着在不确定磨损增量状态数量的前提下采用狄利克雷混合模型对特征自动分类,然后利用吉布斯采样方法确定模型参数,最终得到描述力信号特征与磨损增量映射关系的刀具磨损状态混合模型。根据该混合模型以及当前的力信号信息即可完成刀具磨损量的在线估计。真实应用案例证明了该方法能自适应学习磨损状态并有效估计刀具的连续磨损值。 展开更多
关键词 刀具健康状态监测 刀具磨损 狄利克雷混合模型 吉布斯采样
在线阅读 下载PDF
基于数据关联狄利克雷混合模型的电网净负荷不确定性表征研究 被引量:7
2
作者 李远征 孙天乐 +2 位作者 刘云 赵勇 曾志刚 《自动化学报》 EI CAS CSCD 北大核心 2022年第3期747-761,共15页
针对电网净负荷时序数据关联的特点,提出基于数据关联的狄利克雷混合模型(Data-relevance Dirichlet process mixture model,DDPMM)来表征净负荷的不确定性.首先,使用狄利克雷混合模型对净负荷的观测数据与预测数据进行拟合,得到其混合... 针对电网净负荷时序数据关联的特点,提出基于数据关联的狄利克雷混合模型(Data-relevance Dirichlet process mixture model,DDPMM)来表征净负荷的不确定性.首先,使用狄利克雷混合模型对净负荷的观测数据与预测数据进行拟合,得到其混合概率模型;然后,提出考虑数据关联的变分贝叶斯推断方法,改进后验分布对该混合概率模型进行求解,从而得到混合模型的最优参数;最后,根据净负荷预测值的大小得到其对应的预测误差边缘概率分布,实现不确定性表征.本文基于比利时电网的净负荷数据进行检验,算例结果表明:与传统的狄利克雷混合模型和高斯混合模型(Gaussian mixture model,GMM)等方法相比,所提出的基于数据关联狄利克雷混合模型可以更为有效地表征净负荷的不确定性. 展开更多
关键词 狄利克雷混合模型 净负荷 不确定性表征 时序序列 预测误差
在线阅读 下载PDF
一种基于狄利克雷过程混合模型的文本聚类算法 被引量:10
3
作者 高悦 王文贤 杨淑贤 《信息网络安全》 2015年第11期60-65,共6页
随着互联网的普及,论坛、微博、微信等新媒体已经成为人们获取和发布信息的重要渠道,而网络中的这些文本数据,由于文本数目和内容的不确定性,给网络舆情聚类分析工作带来了很大的挑战。在文本聚类分析中,选择合适的聚类数目一直是一个... 随着互联网的普及,论坛、微博、微信等新媒体已经成为人们获取和发布信息的重要渠道,而网络中的这些文本数据,由于文本数目和内容的不确定性,给网络舆情聚类分析工作带来了很大的挑战。在文本聚类分析中,选择合适的聚类数目一直是一个难点。文章提出了一种基于狄利克雷过程混合模型的文本聚类算法,该算法基于非参数贝叶斯框架,可以将有限混合模型扩展成无限混合分量的混合模型,使用狄利克雷过程中的中国餐馆过程构造方式,实现了基于中国餐馆过程的狄利克雷混合模型,然后采用吉布斯采样算法近似求解模型,能够在不断的迭代过程中确定文本的聚类数目。实验结果表明,文章提出的聚类算法,和经典的K-means聚类算法相比,不仅能更好的动态确定文本主题聚类数目,而且该算法的聚类质量(纯度、F-score和轮廓系数)明显好于K-means聚类算法。 展开更多
关键词 文本聚类 狄利克雷过程混合模型 非参数贝叶斯 吉布斯采样
在线阅读 下载PDF
基于狄利克雷过程混合模型的城市活动聚类方法研究 被引量:1
4
作者 陈仲 《交通运输系统工程与信息》 EI CSCD 北大核心 2020年第6期247-252,共6页
手机信令数据不仅记录个体出行轨迹,也为分析城市活动空间分布特征提供了基础.本文提出一种基于狄利克雷混合模型的城市活动特征聚类方法,以手机信令提取居民出行OD为基础,将每个基站的到发出行量作为表征该基站所处空间位置的活动特征... 手机信令数据不仅记录个体出行轨迹,也为分析城市活动空间分布特征提供了基础.本文提出一种基于狄利克雷混合模型的城市活动特征聚类方法,以手机信令提取居民出行OD为基础,将每个基站的到发出行量作为表征该基站所处空间位置的活动特征,研究特征的聚类方法.引入狄利克雷分布作为先验分布,由中餐馆模型推定特征聚类数量.与其他聚类方法相比,该方法最大的优点在于无需事先指定聚类数量,避免了传统聚类方法的缺陷.将本文方法应用到三亚市城市活动特征聚类当中,结果能够有效地反应不同城市功能组团的活动特征. 展开更多
关键词 城市交通 出行特征 狄利克雷过程混合模型 手机信令
在线阅读 下载PDF
基于狄利克雷过程混合模型的内外先验融合
5
作者 张墨华 彭建华 《计算机科学》 CSCD 北大核心 2020年第5期172-180,共9页
近年来,使用高斯混合模型作为块先验的贝叶斯方法取得了优秀的图像复原性能,针对这类模型分量固定及主要依赖外部学习的缺点,提出了一种新的基于狄利克雷过程混合模型的图像先验模型。该模型从干净图像数据库中学习外部通用先验,从退化... 近年来,使用高斯混合模型作为块先验的贝叶斯方法取得了优秀的图像复原性能,针对这类模型分量固定及主要依赖外部学习的缺点,提出了一种新的基于狄利克雷过程混合模型的图像先验模型。该模型从干净图像数据库中学习外部通用先验,从退化图像中学习内部先验,借助模型中统计量的可累加性自然实现内外部先验融合。通过聚类的新增及归并机制,模型的复杂度随着数据的增大或缩小而自适应地变化,可以学习到可解释及紧凑的模型。为了求解所有隐变量的变分后验分布,提出了一种结合新增及归并机制的批次更新可扩展变分算法,解决了传统坐标上升算法在大数据集下效率较低、容易陷入局部最优解的问题。在图像去噪及填充实验中,相比传统方法,所提模型无论在客观质量评价还是视觉观感上都更有优势,验证了该模型的有效性。 展开更多
关键词 狄利克雷混合模型 图像复原 变分推理 批次更新 先验学习
在线阅读 下载PDF
主题模型在短文本上的应用研究 被引量:2
6
作者 韩肖赟 侯再恩 孙绵 《计算机工程与科学》 CSCD 北大核心 2020年第1期144-152,共9页
针对短文本上以LDA为主的传统主题模型易受特征稀疏、噪声以及冗余影响的问题,首先梳理了文本特征表示法的变化以及短文本上主题模型的发展现状,并系统地总结了LDA模型和狄利克雷多项混合模型(DMM)各自的生成过程和相应的吉布斯采样参... 针对短文本上以LDA为主的传统主题模型易受特征稀疏、噪声以及冗余影响的问题,首先梳理了文本特征表示法的变化以及短文本上主题模型的发展现状,并系统地总结了LDA模型和狄利克雷多项混合模型(DMM)各自的生成过程和相应的吉布斯采样参数推导。关于主题模型最优主题数,选取常见的4种优化指标进行了详细的对比说明。最后分析了近2年主题模型的扩展研究和其在网络舆情上的简单应用,并以此指明了未来主题模型的研究方向和侧重点。 展开更多
关键词 潜在狄利克雷分配模型 狄利克雷多项混合模型 短文本 主题模型 网络舆情 吉布斯采样
在线阅读 下载PDF
一种全自动的MSTAR SAR目标图像分割方法 被引量:1
7
作者 徐侃 杨丽春 +1 位作者 刘钢 杨文 《现代雷达》 CSCD 北大核心 2012年第9期59-62,共4页
狄利克雷过程混合模型(Dirichlet Process Mixture,DPM)作为一种非参数概率统计模型,可以有效应用于SAR图像的非监督分类。文中提出一种全自动的MSTAR坦克SAR图像分割方法。该方法首先基于DPM确定出图像中的类别数目,接着使用马尔科夫... 狄利克雷过程混合模型(Dirichlet Process Mixture,DPM)作为一种非参数概率统计模型,可以有效应用于SAR图像的非监督分类。文中提出一种全自动的MSTAR坦克SAR图像分割方法。该方法首先基于DPM确定出图像中的类别数目,接着使用马尔科夫随机场(Markov Random Field,MRF)对所得图像类别概率的空间邻域关系进行描述,然后结合标号代价能量优化算法获取最终的分割结果。该方法在不需要人为指定待分割图像类别个数的同时,能较好地保证分割结果的合理性与连贯性。在MSTAR SAR数据上的实验表明了其有效性。 展开更多
关键词 SAR图像 混合狄利克雷模型 马尔科夫随机场 能量优化
在线阅读 下载PDF
基于PU学习算法的虚假评论识别研究 被引量:31
8
作者 任亚峰 姬东鸿 +1 位作者 张红斌 尹兰 《计算机研究与发展》 EI CSCD 北大核心 2015年第3期639-648,共10页
识别虚假评论有着重要的理论意义与现实价值.先前工作集中于启发式策略和传统的全监督学习算法.最近研究表明:人类无法通过先验知识有效识别虚假评论,手工标注的数据集必定存在一定数量的误例,因此简单使用传统的全监督学习算法识别虚... 识别虚假评论有着重要的理论意义与现实价值.先前工作集中于启发式策略和传统的全监督学习算法.最近研究表明:人类无法通过先验知识有效识别虚假评论,手工标注的数据集必定存在一定数量的误例,因此简单使用传统的全监督学习算法识别虚假评论并不合理.容易被错误标注的样例称为间谍样例,如何确定这些样例的类别标签将直接影响分类器的性能.基于少量的真实评论和大量的未标注评论,提出一种创新的PU(positive and unlabeled)学习框架来识别虚假评论.首先,从无标注数据集中识别出少量可信度较高的负例.其次,通过整合LDA(latent Dirichlet allocation)和K-means,分别计算出多个代表性的正例和负例.接着,基于狄利克雷过程混合模型(Dirichlet process mixture model,DPMM),对所有间谍样例进行聚类,混合种群性和个体性策略来确定间谍样例的类别标签.最后,多核学习算法被用来训练最终的分类器.数值实验证实了所提算法的有效性,超过当前的基准. 展开更多
关键词 虚假评论 全监督学习 PU学习 狄利克雷过程混合模型 多核学习
在线阅读 下载PDF
基于DPMM-CHMM的机械设备性能退化评估研究 被引量:8
9
作者 季云 王恒 +1 位作者 朱龙彪 刘肖 《振动与冲击》 EI CSCD 北大核心 2017年第23期170-174,共5页
针对传统的HMM模型状态数必须预先设定的不足,提出了一种基于DPMM-CHMM的机械设备性能退化评估方法。该方法利用DPMM模型的自动聚类功能,实现了模型结构根据观测数据的自适应变化和动态调整,获得设备运行过程中的最优退化状态数,并结合C... 针对传统的HMM模型状态数必须预先设定的不足,提出了一种基于DPMM-CHMM的机械设备性能退化评估方法。该方法利用DPMM模型的自动聚类功能,实现了模型结构根据观测数据的自适应变化和动态调整,获得设备运行过程中的最优退化状态数,并结合CHMM良好的分析和建模能力,得到设备退化状态转移路径,实现机械设备运行过程中的退化状态识别和性能评估,并利用滚动轴承全寿命数据进行了应用研究。结果表明,该方法可以有效地识别轴承运行中的不同退化状态,为基于状态的设备维修提供了理论指导。 展开更多
关键词 狄利克雷混合模型 连续隐马尔可夫模型 性能退化评估 滚动轴承
在线阅读 下载PDF
面向微博文本流的负面情感突发话题检测 被引量:6
10
作者 李艳红 赵宏伟 +1 位作者 王素格 李德玉 《计算机应用》 CSCD 北大核心 2020年第12期3458-3464,共7页
如何从海量、嘈杂的微博文本流中及时发现负面情感突发话题对于突发事件的应急响应和处置至关重要,而传统的突发话题检测方法往往忽略了负面情感突发话题与非负面情感突发话题之间的区别,为此提出了一种面向微博文本流的负面情感突发话... 如何从海量、嘈杂的微博文本流中及时发现负面情感突发话题对于突发事件的应急响应和处置至关重要,而传统的突发话题检测方法往往忽略了负面情感突发话题与非负面情感突发话题之间的区别,为此提出了一种面向微博文本流的负面情感突发话题检测(NE-BTD)算法。首先,将微博中的主题词对的加速度和负面情感强度变化率作为负面情感突发话题的判定依据;然后,利用突发词对的速度确定负面情感突发话题的窗口范围;最后,使用一种基于吉布斯采样的狄利克雷多项式混合模型(GSDMM)聚类算法得到窗口中负面情感突发话题的主题结构。在实验中将所提出的NE-BTD算法与已有的一种基于情感方法的话题检测(EBM-TD)算法进行对比,结果表明所提出的NE-BTD算法相较EBM-TD算法准确率和召回率至少提高了20%,并且可以至少提前40 min检出负面情感突发话题。 展开更多
关键词 微博 文本流 突发话题 负面情感 狄利克雷多项式混合模型
在线阅读 下载PDF
基于特征贡献率的机械故障分类方法 被引量:2
11
作者 马波 赵祎 《振动.测试与诊断》 EI CSCD 北大核心 2020年第3期458-464,622,共8页
为提高往复压缩机、航空发动机等复杂机械故障分类的准确率,依据特征参数对不同故障的敏感度存在差异的特性,提出一种狄利克雷过程混合模型(Dirichlet process mixture model,简称DPMM)与贝叶斯推断贡献(Bayesian inference contributi... 为提高往复压缩机、航空发动机等复杂机械故障分类的准确率,依据特征参数对不同故障的敏感度存在差异的特性,提出一种狄利克雷过程混合模型(Dirichlet process mixture model,简称DPMM)与贝叶斯推断贡献(Bayesian inference contribution,简称BIC)相结合的分析方法。采用DPMM方法自学习机械振动信号高维特征的统计分布模型,并依据BIC理论计算得到各特征参数对模型的贡献率,通过对比观测数据与各类故障数据特征贡献率间的差异实现故障分类。试验结果表明,该方法的平均分类准确率比基于高斯混合模型(Gaussian mixture model,简称GMM)的故障诊断方法的平均分类准确率提高19.29%,比基于Relief算法的故障诊断方法的平均分类准确率提高32.71%,且该方法的时效性高,泛化性能强,能够更有效地进行复杂机械故障分类。 展开更多
关键词 故障诊断 特征贡献率 狄利克雷过程混合模型 贝叶斯推断
在线阅读 下载PDF
居民个体出行行为聚类及出行模式分析——以三亚市为例 被引量:5
12
作者 陈仲 杨克青 《上海城市规划》 2020年第5期30-35,共6页
手机信令数据不仅记录个体出行轨迹,同时也为分析城市居民出行模式提供了基础。通过提出一种基于狄利克雷过程混合模型的聚类方法,以从手机信令提取的出行OD(Origin-Destination)为基础,研究个体出行行为及群体出行模式。与其他聚类方... 手机信令数据不仅记录个体出行轨迹,同时也为分析城市居民出行模式提供了基础。通过提出一种基于狄利克雷过程混合模型的聚类方法,以从手机信令提取的出行OD(Origin-Destination)为基础,研究个体出行行为及群体出行模式。与其他聚类方法相比,该方法最大的优点在于无需事先指定聚类的数量,并且能够基于数据识别出新的聚类。通过将该方法应用到三亚市的居民出行行为研究中,得到15类个体行为聚类。从而进一步结合城市特征,归纳得出5种典型出行模式,较为全面地反映三亚居民活动的实际情况,为制定差异化的交通政策、精细化交通管理提供支撑。 展开更多
关键词 出行行为 模式聚类 手机信令 狄利克雷混合模型
在线阅读 下载PDF
基于DPMM和MRF的高分辨率遥感图像无监督对象分割 被引量:3
13
作者 刘尚旺 侯旺旺 赵欣莹 《仪器仪表学报》 EI CAS CSCD 北大核心 2018年第11期222-231,共10页
为准确、自动地进行高分辨率遥感图像地物目标对象分割,提出一种基于狄利克雷过程混合模型(DPMM)和马尔可夫随机场(MRF)的无监督对象分割方法(DPMM-OMRF)。首先,使用网格划分超像素为基本对象;其次,使用多维高斯分布构建DPMM先验,并使... 为准确、自动地进行高分辨率遥感图像地物目标对象分割,提出一种基于狄利克雷过程混合模型(DPMM)和马尔可夫随机场(MRF)的无监督对象分割方法(DPMM-OMRF)。首先,使用网格划分超像素为基本对象;其次,使用多维高斯分布构建DPMM先验,并使用相似性度量构建MRF先验,二者以自适应权重方式相结合作为DPMM-OMRF模型的先验分布;然后,在贝叶斯框架下,将基本对象的似然分布与联合先验分布结合,构建DPMM-OMRF模型,并推导类标签的条件分布;最后,通过推导和计算类标签后验概率,设计Gibbs采样方法,更新DPMM-OMRF模型的标签场和参数。实验结果表明,DPMM-OMRF模型的总体分类精度(OA)提高到90%左右,Kappa系数接近0.8,并且能够准确地识别出地物目标类属数和更加准确地分割出完整地物目标对象。 展开更多
关键词 遥感图像 无监督对象分割 狄利克雷过程混合模型 马尔可夫随机场 GIBBS采样
在线阅读 下载PDF
基于标签共现和特征局部相关的心电异常检测方法
14
作者 韩京宇 钱龙 +1 位作者 葛康 毛毅 《计算机科学》 CSCD 北大核心 2023年第3期139-146,共8页
自动的心电异常识别是一个多标签分类问题,多通过对每个标签训练一个二分类器来实现异常识别。由于异常数目多,特征和异常间以及不同异常间的相关性复杂,自动检测的效果并不理想。为了充分利用异常和特征间的依存关系,提出了一种基于异... 自动的心电异常识别是一个多标签分类问题,多通过对每个标签训练一个二分类器来实现异常识别。由于异常数目多,特征和异常间以及不同异常间的相关性复杂,自动检测的效果并不理想。为了充分利用异常和特征间的依存关系,提出了一种基于异常标签共现和特征局部相关(Label Co-occurrence and Feature’s local Pertinence,LCFP)的心电异常识别方法。首先,根据标签共现性和特征局部相关性,为标签构建包含宏特征和微特征的联合特征空间。宏特征采用狄利克雷过程混合模型聚类构建,以区分不同的共现标签集;微特征是原始特征空间的一个子集,用于区分共现标签集中的各个标签。进而,在联合特征空间为每个异常训练一个一对多(One-Versus-All)的概率分类器。其次,为充分利用异常的关联,提出在概率分类器排序基础上区分相关和非相关标签,采用Beta分布自适应地学习锚阈值和相关度阈值,以确定实例的相关标签集。LCFP是一种检测多种心电异常的通用方法,提高了心电异常识别的精度。在两个真实数据集上,F1指标分别提高了4%和22.4%,验证了所提方法的有效性。 展开更多
关键词 心电异常 多标签分类 标签共现 狄利克雷过程混合模型 BETA分布 锚阈值
在线阅读 下载PDF
基于风电预测误差聚类的分布鲁棒含储能机组组合 被引量:26
15
作者 施云辉 王橹裕 +1 位作者 陈玮 郭创新 《电力系统自动化》 EI CSCD 北大核心 2019年第22期3-12,121,共11页
为应对风电不确定性给电力系统调度带来的难题,提出了一种基于风电预测误差聚类的分布鲁棒含储能机组组合模型。首先,基于狄利克雷过程高斯混合模型对风电预测误差进行聚类,建立了数据驱动的风电预测误差模糊集,并进一步建立了考虑风电... 为应对风电不确定性给电力系统调度带来的难题,提出了一种基于风电预测误差聚类的分布鲁棒含储能机组组合模型。首先,基于狄利克雷过程高斯混合模型对风电预测误差进行聚类,建立了数据驱动的风电预测误差模糊集,并进一步建立了考虑风电场间风电预测误差相关性的不确定集。接着提出了考虑储能的分布鲁棒机组组合模型,建立了考虑储能系统循环老化成本的目标函数。针对该模型min-max-max-min的4层结构,将其分解为两阶段问题,在第1阶段中引入运行域变量、爬坡事件约束与储能能量约束,以消去第2阶段中的动态约束,并将第2阶段问题通过KKT条件转化为单层问题,然后采用列约束生成算法对两阶段问题进行求解。最后,通过IEEE 6节点以及IEEE 118节点的算例分析,证明了所提模型的鲁棒性和有效性。 展开更多
关键词 狄利克雷过程高斯混合模型 分布鲁棒优化 非参数贝叶斯 锂电池储能 风电不确定性 运行域
在线阅读 下载PDF
基于变分贝叶斯推断的DPGMM风电机组异常数据识别研究 被引量:6
16
作者 甘雨 郭鹏 林立栋 《动力工程学报》 CAS CSCD 北大核心 2023年第7期885-892,共8页
为了准确识别和剔除风电机组在实际运行过程中产生的异常数据,以便为功率预测等工作提供有效的数据支持,通过分析风电机组运行数据散点在风速-功率(v-P)坐标系中的分布特征,提出了基于变分贝叶斯推断的狄利克雷过程高斯混合模型异常数... 为了准确识别和剔除风电机组在实际运行过程中产生的异常数据,以便为功率预测等工作提供有效的数据支持,通过分析风电机组运行数据散点在风速-功率(v-P)坐标系中的分布特征,提出了基于变分贝叶斯推断的狄利克雷过程高斯混合模型异常数据识别方法。将试验机组E17实测数据散点沿水平功率方向以一定间隔划分区间,采用能自适应确定最佳分量个数的狄利克雷过程高斯混合模型对每一个功率区间内的数据散点进行聚类,结合各高斯分量置信椭圆参数及数据散点在v-P坐标系中的分布特征,对试验机组E17各功率区间内的高斯分量及其聚类散点进行异常标识。结果表明:该模型克服了传统高斯混合模型需要人为确定分量个数的缺点,能够对风电机组异常数据进行准确识别。 展开更多
关键词 风电机组 异常数据识别 狄利克雷过程高斯混合模型 变分贝叶斯推断
在线阅读 下载PDF
未知杂波条件下样本集校正的势估计概率假设密度滤波算法 被引量:4
17
作者 杨丹 姬红兵 张永权 《电子与信息学报》 EI CSCD 北大核心 2018年第4期912-919,共8页
在贝叶斯框架下的多目标跟踪算法中,总是假设杂波的先验信息是已知的。然而,实际应用中,杂波分布一般是未知的,假设的杂波分布往往与实际情况匹配度差,难以保证滤波精度。针对该问题,该文研究了未知杂波势估计概率假设密度(CPHD)滤波算... 在贝叶斯框架下的多目标跟踪算法中,总是假设杂波的先验信息是已知的。然而,实际应用中,杂波分布一般是未知的,假设的杂波分布往往与实际情况匹配度差,难以保证滤波精度。针对该问题,该文研究了未知杂波势估计概率假设密度(CPHD)滤波算法。首先,提出一种基于狄利克雷过程混合模型(DPMM)类的未知杂波CPHD算法,该算法能够自动选取合适的类数对杂波进行描述,有效降低了杂波空间分布估计的误差。此外,提出样本集校正的思想,并将其引入所提算法,通过去除样本集中由真实目标产生的量测,较好地解决了杂波数过估和目标数低估的问题。与传统算法相比,所提算法的滤波精度更接近于杂波信息匹配情况下的性能,仿真结果验证了其优越性与鲁棒性。 展开更多
关键词 多目标跟踪 参数估计 未知杂波 狄利克雷过程混合模型 势估计概率假设密度滤波
在线阅读 下载PDF
考虑高阻接地的配电网故障检测方法 被引量:18
18
作者 刘硕 刘灏 +2 位作者 毕天姝 于希娟 江阳 《电网技术》 EI CSCD 北大核心 2023年第8期3438-3447,共10页
实际配电系统中存在一些高阻态的故障,表现为微弱、非线性、随机和不稳定的现象,这对于故障的检测提出了更高的挑战。为此,该文提出一种考虑高阻接地的配电网故障检测方法。首先,通过分析大量的现场波形数据,得到了故障发生前后的波形... 实际配电系统中存在一些高阻态的故障,表现为微弱、非线性、随机和不稳定的现象,这对于故障的检测提出了更高的挑战。为此,该文提出一种考虑高阻接地的配电网故障检测方法。首先,通过分析大量的现场波形数据,得到了故障发生前后的波形特性。并且,为减弱噪声的干扰,对现场数据进行预处理。进一步,提出了一种基于数学形态学的故障特征增强方法,以放大故障在发生时刻的响应,同时减弱故障暂态过程以及正常运行状态下的畸变响应。接着,提出了一种基于狄利克雷过程高斯混合模型的故障时刻检测方法,通过对增强后的故障特征进行自适应判断,实现故障时刻的快速准确检测。基于实际配电网现场数据,进一步验证了该文所提方法的优势。实验结果表明,所提方法通用性强,仅需要配电网零序电流数据。同时,该文方法具有较高的检测精度和检测效率,满足配电网的可靠性和安全性要求。 展开更多
关键词 故障检测 配电网 高阻故障 数学形态学 狄利克雷过程高斯混合模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部