期刊文献+
共找到478篇文章
< 1 2 24 >
每页显示 20 50 100
带特征权重的混合特征模糊C均值算法 被引量:1
1
作者 谢信喜 王士同 《计算机工程与应用》 CSCD 北大核心 2008年第6期182-183,233,共3页
针对模糊数据,Hathaway提出了模糊C均值算法(FCM);针对符号数据,El-Sonbaty和Ismail提出了符号数据模糊C均值算法(FSCM);Miin-ShenYang等人对FSCM进行了改进,提出了混合特征的模糊C均值算法(MVFCM),MVFCM比FSCM更有效更具有实用性。在MV... 针对模糊数据,Hathaway提出了模糊C均值算法(FCM);针对符号数据,El-Sonbaty和Ismail提出了符号数据模糊C均值算法(FSCM);Miin-ShenYang等人对FSCM进行了改进,提出了混合特征的模糊C均值算法(MVFCM),MVFCM比FSCM更有效更具有实用性。在MVFCM的基础上,给出了带特征权重的混合特征的模糊C均值算法(WMVFCM),并通过实验比较,说明WMVFCM比MVFCM更有效。 展开更多
关键词 模糊c均值算法 符号数据 符号模糊c均值算法 混合特征模糊c均值算法
在线阅读 下载PDF
基于改进蜣螂优化模糊C均值的WSN分簇路由算法
2
作者 刘晓悦 郑新颖 《仪表技术与传感器》 北大核心 2025年第1期105-111,126,共8页
针对无线传感器网络能耗不均、生存周期短的问题,提出一种基于改进蜣螂优化模糊C均值的WSN分簇路由算法(IDFCA)。分簇阶段,采用改进蜣螂算法优化模糊C均值、初始聚类中心的选取,根据距离以及网络最优簇头个数划分网络拓扑结构,以均衡各... 针对无线传感器网络能耗不均、生存周期短的问题,提出一种基于改进蜣螂优化模糊C均值的WSN分簇路由算法(IDFCA)。分簇阶段,采用改进蜣螂算法优化模糊C均值、初始聚类中心的选取,根据距离以及网络最优簇头个数划分网络拓扑结构,以均衡各簇内节点能耗;簇头选举阶段,综合考虑节点能量和距离,并设置簇头更换阈值,降低簇头更换频率,减少网络能耗;数据传输阶段,利用改进的蜣螂算法,基于能量、负载和转发方向搜索簇头到基站的最优传输路径。仿真结果表明:IDFCA算法的网络相比于LEACH、CS-K、POFCA分别提高了56.1%、26.1%、14.6%。IDFCA算法能够均衡网络能耗,延长网络生命周期。 展开更多
关键词 无线传感器网络 改进蜣螂优化算法 模糊c均值 分簇路由算法 能量均衡
在线阅读 下载PDF
优化模糊C均值聚类的台区用户用电特征分析方法 被引量:6
3
作者 雷光远 张涛 +2 位作者 唐永聪 梁特 舒可心 《电力系统及其自动化学报》 CSCD 北大核心 2024年第1期99-105,共7页
精准的用户特性分析方法是配电网模型计算与电力服务制定的重要基础之一,为克服现有配电台区多样性用户划分的数量选择与特征选择难题,提出一种优化模糊C-均值聚类的用户用电特征分析方法。利用优化的模糊C-均值算法实现聚类分析,通过... 精准的用户特性分析方法是配电网模型计算与电力服务制定的重要基础之一,为克服现有配电台区多样性用户划分的数量选择与特征选择难题,提出一种优化模糊C-均值聚类的用户用电特征分析方法。利用优化的模糊C-均值算法实现聚类分析,通过聚类中心建立特征模型,从而获知多样化场景下配电台区用户特性。在聚类过程中,通过蜜獾算法优化选取模糊C-均值聚类初值,来应对易局部最优的难题,找到目标函数最小的结果;利用指标自适应极小值的原则选取最佳聚类数,使聚类中心代表性更强。通过天津地区的典型案例获取用户用电特征,实现聚类目标函数与结果综合性评价指标最优的目的。 展开更多
关键词 聚类分析 模糊c均值 蜜獾优化 用电特征
在线阅读 下载PDF
基于混合距离学习的双指数模糊C均值算法 被引量:23
4
作者 王骏 王士同 《软件学报》 EI CSCD 北大核心 2010年第8期1878-1888,共11页
提出了一种基于DI-FCM(double indices fuzzy C-means)算法框架的无监督距离学习算法——基于混合距离学习的双指数模糊C均值算法HDDI-FCM(double indices fuzzy C-m eans with hybrid distance).数据集未知距离度量被表示为若干已有距... 提出了一种基于DI-FCM(double indices fuzzy C-means)算法框架的无监督距离学习算法——基于混合距离学习的双指数模糊C均值算法HDDI-FCM(double indices fuzzy C-m eans with hybrid distance).数据集未知距离度量被表示为若干已有距离的线性组合,然后执行HDDI-FCM,在对数据集进行有效聚类的同时进行距离学习.为了保证迭代算法收敛,引入了Steffensen迭代法来改进计算簇中心点的迭代公式.讨论了算法中参数的选择.基于UCI(University of California,Irvine)数据集的实验结果表明该算法是有效的. 展开更多
关键词 距离学习 聚类 模糊c均值算法 混合距离 Steffensen迭代法
在线阅读 下载PDF
改进混合蛙跳算法优化的产品族模糊C均值聚类设计方法 被引量:4
5
作者 崔文华 刘晓冰 +1 位作者 王伟 王介生 《大连理工大学学报》 EI CAS CSCD 北大核心 2013年第5期760-765,共6页
研究了基于改进混合蛙跳算法优化的模糊C均值聚类解决模块化产品族设计中产品平台的确定问题.建立了该产品开发过程中的部件关联矩阵,采用变个体长度的混合蛙跳算法同时优化模糊聚类数和聚类中心,求得产品构成部件的最优模糊划分.切断... 研究了基于改进混合蛙跳算法优化的模糊C均值聚类解决模块化产品族设计中产品平台的确定问题.建立了该产品开发过程中的部件关联矩阵,采用变个体长度的混合蛙跳算法同时优化模糊聚类数和聚类中心,求得产品构成部件的最优模糊划分.切断算子和拼接算子用来对个体进行重新组合而形成新个体,采用ISODATA迭代算法进行局部寻优.通过对纸币清分机进行的产品族设计的仿真研究,表明所提方法为产品族模块化设计提供了定量数学分析和快速配置的理论依据. 展开更多
关键词 纸币清分机 产品族 产品平台 混合蛙跳算法 模糊c均值聚类
在线阅读 下载PDF
遗传+模糊C-均值混合聚类算法 被引量:23
6
作者 陈金山 韦岗 《电子与信息学报》 EI CSCD 北大核心 2002年第2期210-215,共6页
本文提出了一种新的结合遗传算法(GA)和模糊C^-均值算法(FCM)的混合聚类算法(HCA)。它通过对问题的解空间交替进行全局和局部搜索,达到快速收敛至全局最优解,较好地解决了GA在达到全局最优解前收敛慢和FCM算法容易陷入局部极小的问题。... 本文提出了一种新的结合遗传算法(GA)和模糊C^-均值算法(FCM)的混合聚类算法(HCA)。它通过对问题的解空间交替进行全局和局部搜索,达到快速收敛至全局最优解,较好地解决了GA在达到全局最优解前收敛慢和FCM算法容易陷入局部极小的问题。三组不同分布类型的数据聚类实验表明,该算法具有较好的通用性和有效性。 展开更多
关键词 混合聚类算法 遗传算法 模糊c-均值算法
在线阅读 下载PDF
基于改进模糊C均值聚类与SMO算法的地铁轨道健康状态评价
7
作者 许以凯 杨艺 +2 位作者 张明凯 赵才友 万壮 《铁道标准设计》 北大核心 2024年第11期53-59,共7页
轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该... 轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该模型首先提出包含轨道几何状态和结构状态的综合评价指标体系;其次采用变异系数法计算评价指标的权重系数并代入模糊C均值聚类法,得到各轨道样本的分类结果;在此基础上,再利用序列最小优化算法通过划分数据对轨道健康状态进行评价;最后通过实例分析对该评价模型进行验证并开展研究。研究结果表明,经模型评价的855个轨道单元评价结果中优良比例为94%,预测效果良好,平均误差为5%,进而验证了该模型的指标体系和评价方法的科学性和合理性,并给出了进一步研究优化的方向。本文对各轨道指标统筹综合评价,为地铁轨道工务管理线路质量评价提供一种新思路,使轨道设备管理变得有序可控,减少人力、物力资源的浪费。 展开更多
关键词 地铁 轨道 健康状态评价 变异系数法 模糊c均值聚类 SMO算法
在线阅读 下载PDF
基于自适应近邻信息的模糊C均值聚类算法 被引量:1
8
作者 高云龙 李建鹏 +3 位作者 郑兴莘 邵桂芳 祝青园 曹超 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期1045-1058,共14页
传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点... 传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点之间相似度的度量,每个数据点都可以看作其他数据点的近邻,但是不同数据点之间的相似度是不同的。将样本点的近邻信息GX和类中心点的近邻信息GV融入基础FCM模型中,为聚类过程提供更多的数据结构信息,用于指导聚类算法中的簇划分过程,以提升算法的稳定性,并提出了3个迭代算法求解本文提出的聚类模型。与其他先进聚类算法对比,在部分基准数据集上聚类性能有10%以上的提升,同时还从参数敏感性、收敛性、消融实验等方面对算法进行评价。实验结果可以充分显示本文提出的聚类算法的可行性与有效性。 展开更多
关键词 模糊c均值聚类 自适应近邻 算法鲁棒性 迭代算法
在线阅读 下载PDF
基于快速鲁棒模糊C有序均值聚类的苗族服饰图像分割算法
9
作者 陈阳 黄成泉 +3 位作者 雷欢 彭家磊 覃小素 周丽华 《毛纺科技》 CAS 北大核心 2024年第8期81-89,共9页
苗族服饰图像具有绣线纹理复杂、色彩形状多样等特征,针对模糊C有序均值(Fuzzy C-Ordered-Means,FCOM)聚类算法在进行苗族服饰图像分割时,存在耗时长、分割效果不理想的问题,提出了一种快速鲁棒模糊C有序均值聚类算法。在FCOM算法基础... 苗族服饰图像具有绣线纹理复杂、色彩形状多样等特征,针对模糊C有序均值(Fuzzy C-Ordered-Means,FCOM)聚类算法在进行苗族服饰图像分割时,存在耗时长、分割效果不理想的问题,提出了一种快速鲁棒模糊C有序均值聚类算法。在FCOM算法基础上加入了竞争学习的思想,通过构造新的隶属度约束函数,对像素点进行更加强制清晰的划分,提高图像像素定位的准确性,从而加快算法的收敛速度。结果表明,本文算法在图像分割过程中能有效地降低异常值的影响,获得更加准确的分割结果。该算法在Jaccard相似系数、分割精度、Dice相似系数、模糊划分系数及模糊划分熵等性能方面均优于其他几种模糊C均值(Fuzzy C-Means,FCM)算法,且分割时间与迭代次数也优于FCOM算法。 展开更多
关键词 苗族图像分割 聚类算法 模糊c有序均值 竞争学习 鲁棒性
在线阅读 下载PDF
融合粒子群和混合蛙跳的模糊C-均值算法 被引量:1
10
作者 李真 罗可 《计算机应用》 CSCD 北大核心 2011年第5期1355-1358,共4页
针对模糊聚类算法中存在的对初始值敏感、易陷入局部最优等问题,提出了一种融合粒子群算法和混合蛙跳算法的模糊C-均值聚算法。通过设计了一种新颖的搜索粒度系数,充分利用粒子群算法收敛速度快、局部搜索能力强的优点与混合蛙跳算法全... 针对模糊聚类算法中存在的对初始值敏感、易陷入局部最优等问题,提出了一种融合粒子群算法和混合蛙跳算法的模糊C-均值聚算法。通过设计了一种新颖的搜索粒度系数,充分利用粒子群算法收敛速度快、局部搜索能力强的优点与混合蛙跳算法全局寻优能力强、跳出局部最优能力好的特点,同时对SFLA中更新算法进行了改进。实验结果表明,该算法提高了模糊聚类算法的搜索能力和聚类效果,在全局寻优能力、跳出局部最优能力、收敛速度等方面具有优势。 展开更多
关键词 混合蛙跳算法 粒子群算法 模糊c-均值 目标函数
在线阅读 下载PDF
基于自适应模糊C均值算法的电力负荷分类研究 被引量:67
11
作者 杨浩 张磊 +1 位作者 何潜 牛强 《电力系统保护与控制》 EI CSCD 北大核心 2010年第16期111-115,122,共6页
针对当前负荷建模中存在的负荷时变性问题,提出了基于自适应模糊C均值聚类的电力负荷动特性分类方法。探讨了聚类分析方法在负荷动特性分类中的应用,包括聚类特征向量的选取和分类方法研究两个方面。对原始模糊C均值聚类算法中的聚类数... 针对当前负荷建模中存在的负荷时变性问题,提出了基于自适应模糊C均值聚类的电力负荷动特性分类方法。探讨了聚类分析方法在负荷动特性分类中的应用,包括聚类特征向量的选取和分类方法研究两个方面。对原始模糊C均值聚类算法中的聚类数c进行了研究,在原始算法中融入新的聚类有效性函数,对算法进行了改进,改进算法不需要预先选择类的数目作为先验值。通过动模实验数据的负荷分类实例,表明该方法可自动获取最佳分类数,且分类效果要好于原始算法。 展开更多
关键词 电力负荷 模糊c均值算法 自适应 动态特性聚类 负荷建模
在线阅读 下载PDF
基于EEMD和模糊C均值聚类算法诊断发动机曲轴轴承故障 被引量:36
12
作者 张玲玲 廖红云 +2 位作者 曹亚娟 骆诗定 赵懿冠 《内燃机学报》 EI CAS CSCD 北大核心 2011年第4期332-336,共5页
针对发动机振动信号的非平稳性以及特征参数的模糊性特点,提出了一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和模糊C均值聚类(Fuzzy Center Mean,FCM)的故障诊断方法,通过对已知故障样本信号进行EEMD分解,... 针对发动机振动信号的非平稳性以及特征参数的模糊性特点,提出了一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和模糊C均值聚类(Fuzzy Center Mean,FCM)的故障诊断方法,通过对已知故障样本信号进行EEMD分解,形成初始特征向量矩阵;对该矩阵进行奇异值分解,将矩阵的奇异值组成故障特征向量,标准化后作为FCM的输入,得到分类矩阵和聚类中心;最后通过计算待测故障样本与已知故障样本聚类中心的贴近度实现故障模式识别.故障诊断实例表明,该方法能有效地诊断柴油机曲轴轴承故障. 展开更多
关键词 模糊c均值聚类算法 奇异值分解 经验模式分解 故障诊断 曲轴轴承
在线阅读 下载PDF
模糊C均值算法参数仿真研究 被引量:19
13
作者 李杰 徐勇 +1 位作者 朱昭贤 王云峰 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第2期509-513,共5页
通过对制造单元构建领域的20组文献数据的仿真实验,研究了不同参数对FCM聚类性能的影响,得出了面向制造单元构建的FCM最佳参数组合。实验结果表明:(1)随着模糊度指数m的增加,成组效果降低,聚类时间减少;(2)随着停止参数ξ的减小,不可行... 通过对制造单元构建领域的20组文献数据的仿真实验,研究了不同参数对FCM聚类性能的影响,得出了面向制造单元构建的FCM最佳参数组合。实验结果表明:(1)随着模糊度指数m的增加,成组效果降低,聚类时间减少;(2)随着停止参数ξ的减小,不可行方案数量增加,聚类时间增加;(3)FCM的最佳参数选取为模糊度指数等于2,停止参数等于0.01。 展开更多
关键词 模糊聚类 模糊c均值 算法参数 制造单元构建
在线阅读 下载PDF
基于模糊C均值隶属度约束的图像分割算法 被引量:15
14
作者 胡嘉骏 侯丽丽 +3 位作者 王志刚 俞瑾华 张怡 文颖 《计算机应用》 CSCD 北大核心 2016年第A01期126-129,共4页
模糊C均值算法(FCM)是图像分割中应用最为广泛的一种模糊聚类算法,但是传统的模糊C均值算法并没有考虑到任何空间信息,这使得传统的模糊C均值算法对噪声非常敏感。尽管许多改进的模糊C均值算法采用调节空间信息影响程度的因子,但是这些... 模糊C均值算法(FCM)是图像分割中应用最为广泛的一种模糊聚类算法,但是传统的模糊C均值算法并没有考虑到任何空间信息,这使得传统的模糊C均值算法对噪声非常敏感。尽管许多改进的模糊C均值算法采用调节空间信息影响程度的因子,但是这些因子不仅需要人为设定而且对强噪声仍缺乏足够的鲁棒性。针对FCM噪声敏感问题,提出一种基于FCM隶属度约束的图像分割算法,算法根据图像中的像素点自身的隶属度信息来自动调节算法对噪声的鲁棒性和对图像细节保持性的平衡度,不需要人为设定空间信息的影响程度。通过和FCM的改进算法在自然图像的实验分割效果比较,验证了该算法在去除强噪声的同时能够保持更多的图像细节,从而实现较理想的图像分割结果。 展开更多
关键词 图像分割 模糊c均值算法 聚类算法 空间信息 隶属度
在线阅读 下载PDF
基于模糊C均值聚类和支持向量机算法的燃煤锅炉结渣特性预测 被引量:11
15
作者 王宏武 孙保民 +2 位作者 张振星 信晶 康志忠 《动力工程学报》 CAS CSCD 北大核心 2014年第2期91-96,共6页
应用基于模糊C均值聚类算法预处理的支持向量机算法对锅炉结渣特性进行预测建模,将煤的软化温度、碱酸比、硅铝比和硅比以及无因次炉膛烟气平均温度和无因次实际切圆直径作为模型的输入变量,结渣程度作为输出变量,利用优化后的模型对10... 应用基于模糊C均值聚类算法预处理的支持向量机算法对锅炉结渣特性进行预测建模,将煤的软化温度、碱酸比、硅铝比和硅比以及无因次炉膛烟气平均温度和无因次实际切圆直径作为模型的输入变量,结渣程度作为输出变量,利用优化后的模型对10台锅炉的结渣特性进行评判.结果表明:该模型能够减小训练样本的过拟合度,具有较强的泛化能力;本试验中FCM-SVM预测模型预测结果的正确率为100%,可以实现对锅炉结渣特性的精确预测. 展开更多
关键词 燃煤锅炉 结渣 支持向量机 模糊c均值聚类算法 预测
在线阅读 下载PDF
基于模糊C均值聚类的环境感知推荐算法 被引量:16
16
作者 张付志 常俊风 周全强 《计算机研究与发展》 EI CSCD 北大核心 2013年第10期2185-2194,共10页
针对现有环境感知推荐算法存在的不足,提出一种基于模糊C均值聚类的环境感知推荐算法.首先采用模糊C均值聚类算法对历史环境信息进行聚类,产生聚类及隶属矩阵;然后匹配活动用户环境信息与历史环境信息聚类,采用聚类隶属度作为映射系数... 针对现有环境感知推荐算法存在的不足,提出一种基于模糊C均值聚类的环境感知推荐算法.首先采用模糊C均值聚类算法对历史环境信息进行聚类,产生聚类及隶属矩阵;然后匹配活动用户环境信息与历史环境信息聚类,采用聚类隶属度作为映射系数将符合条件的非隶属数据映射为隶属数据,最终选择与活动环境匹配的隶属用户评分数据为用户产生推荐.同现有算法相比,该算法不仅解决了因用户环境改变不能准确推荐项目的问题,而且通过采用模糊聚类算法克服了传统硬聚类问题,并且借助于隶属映射函数解决了聚类产生的数据稀疏性问题.在MovieLens数据集上比较了新算法和其他算法的性能,验证了所提算法的有效性. 展开更多
关键词 环境感知 模糊c均值聚类 隶属矩阵 隶属映射 推荐算法
在线阅读 下载PDF
基于数据加权策略的模糊C均值聚类算法 被引量:13
17
作者 周世波 徐维祥 柴田 《系统工程与电子技术》 EI CSCD 北大核心 2014年第11期2314-2319,共6页
针对模糊C均值(fuzzy C-means,FCM)聚类算法没有考虑噪声样本点和样本数据的分布特征对聚类结果影响的不足,利用数据加权策略对FCM聚类算法进行改进。改进后的算法通过计算各样本点的密度值,将初始聚类中心限制在高密度样本点区域,并把... 针对模糊C均值(fuzzy C-means,FCM)聚类算法没有考虑噪声样本点和样本数据的分布特征对聚类结果影响的不足,利用数据加权策略对FCM聚类算法进行改进。改进后的算法通过计算各样本点的密度值,将初始聚类中心限制在高密度样本点区域,并把样本点的密度值作为该点的权值,对聚类中心进行调整,突出高密度样本点在聚类中心调整中的影响力,从而达到提高聚类效果的目的。人造数据集和加州大学欧文分校(University of California-Irvine,UCI)真实数据集的实验结果表明,在不提高时间复杂度的同时,与FCM算法相比,基于数据加权策略的FCM算法聚类的准确率更高。 展开更多
关键词 模糊聚类 模糊c均值算法 数据加权
在线阅读 下载PDF
Frangi滤波器和模糊C均值算法相结合的织物瑕疵检测 被引量:8
18
作者 张缓缓 李仁忠 +2 位作者 景军锋 李鹏飞 赵娟 《纺织学报》 EI CAS CSCD 北大核心 2015年第9期120-124,共5页
为解决织物瑕疵自动检测问题,提出一种基于Frangi滤波器和模糊C均值算法(FCM)相结合的织物瑕疵检测方法。首先采用均值下采样方法对采集的织物图像进行预处理,以减少织物背景纹理信息对织物瑕疵检测产生的影响;然后通过Frangi滤波器滤... 为解决织物瑕疵自动检测问题,提出一种基于Frangi滤波器和模糊C均值算法(FCM)相结合的织物瑕疵检测方法。首先采用均值下采样方法对采集的织物图像进行预处理,以减少织物背景纹理信息对织物瑕疵检测产生的影响;然后通过Frangi滤波器滤波增强织物的瑕疵区域;最后利用FCM处理滤波后的图像,确定织物瑕疵区域的像素和非瑕疵区域像素的聚类中心,并分割出瑕疵区域和非瑕疵区域。结果表明,本文方法检测织物瑕疵种类较多,分割效果较好。与其他方法相比,本文提出的算法利用聚类思想对织物疵点进行分割,无需利用正常织物图像进行阈值计算;另外经过滤波后疵点信息明显增强,使得疵点信息与纹理明显不同,从而使聚类更为准确,增加了检测的准确度。 展开更多
关键词 疵点检测 织物疵点 Frangi滤波器 模糊c均值聚类算法
在线阅读 下载PDF
基于模糊C均值聚类算法和贝叶斯判别函数研究深水油藏分类评价 被引量:14
19
作者 丁帅伟 姜汉桥 +2 位作者 陈民锋 罗银富 汤国平 《西安石油大学学报(自然科学版)》 CAS 北大核心 2014年第2期43-49,8-9,共7页
针对目前深水油藏分类评价研究现状的不足,基于模糊C均值聚类算法和贝叶斯判别函数,建立了深水油藏指标选择标准和分类评价体系。优选世界三大深水油气区19例油田的特征属性参数作为典型样品集,采用模糊聚类分析对深水油藏进行了分类,... 针对目前深水油藏分类评价研究现状的不足,基于模糊C均值聚类算法和贝叶斯判别函数,建立了深水油藏指标选择标准和分类评价体系。优选世界三大深水油气区19例油田的特征属性参数作为典型样品集,采用模糊聚类分析对深水油藏进行了分类,在此基础上,应用贝叶斯判别决策理论,建立了深水油藏分类评价的定量判别关系,对未知类型的深水油藏进行了定量分类评价。实例结果表明,应用模糊C均值聚类算法和贝叶斯判别函数相结合进行深水油藏分类评价是有效的,该分类评价体系考虑的油藏参数更为全面,分类结果更为明显,对于深水油田的开发具有一定的指导意义。 展开更多
关键词 深水油藏 油藏分类评价 模糊c均值聚类算法 贝叶斯判别函数
在线阅读 下载PDF
基于改进模糊C均值算法的电力负荷特性分类 被引量:35
20
作者 周开乐 杨善林 《电力系统保护与控制》 EI CSCD 北大核心 2012年第22期58-63,共6页
为了提高负荷分类的精确性和有效性,提出了将基于模拟退火遗传算法的模糊C均值(Simulated Annealing Genetic Algorithm Based Fuzzy C-Means,SAGA-FCM)算法用于电力系统负荷特性分类。SAGA-FCM算法以模糊C均值(Fuzzy C-Means,FCM)算法... 为了提高负荷分类的精确性和有效性,提出了将基于模拟退火遗传算法的模糊C均值(Simulated Annealing Genetic Algorithm Based Fuzzy C-Means,SAGA-FCM)算法用于电力系统负荷特性分类。SAGA-FCM算法以模糊C均值(Fuzzy C-Means,FCM)算法为基础,融合了模拟退火算法较强的局部搜索能力和遗传算法较强的全局搜索能力,克服了传统FCM算法对初始聚类中心敏感和容易陷入局部最优的问题。将其与系统聚类法、K均值(K-Means)算法和传统FCM算法分别用于电力系统负荷特性分类实验,对比分析表明了SAGA-FCM算法用于负荷特性分类的有效性和优越性。 展开更多
关键词 负荷分类 SAGA-FcM算法 模糊c均值算法 聚类
在线阅读 下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部