针对传统灰狼优化(Grey Wolf Optimization, GWO)算法求解无人机三维路径规划问题时会出现收敛速度慢、容易陷入局部最优等问题,提出一种改进混合灰狼优化算法——CLGWO。基于Cat混沌映射和反向学习策略初始化灰狼种群,为算法全局搜索...针对传统灰狼优化(Grey Wolf Optimization, GWO)算法求解无人机三维路径规划问题时会出现收敛速度慢、容易陷入局部最优等问题,提出一种改进混合灰狼优化算法——CLGWO。基于Cat混沌映射和反向学习策略初始化灰狼种群,为算法全局搜索过程中丰富种群多样性奠定基础;提出新型非线性收敛因子的改进策略,提高算法全局搜索能力。在灰狼位置更新中提出引入狮群优化(Lion Swarm Optimization, LSO)算法的扰动因子和动态权重,使灰狼具有主动的搜索能力,避免因灰狼失去种群多样性而陷入局部最优。为验证改进算法的有效性,进行了8个国际通用的标准测试函数收敛性对比实验和无人机三维路径规划仿真实验。实验结果表明,CLGWO算法在单峰、多峰函数上均有较好的收敛性、较高的寻优精度;三维路径仿真环境下,CLGWO算法的平均路径长度、平均迭代次数、平均运行时间相比于GWO算法分别优化了33%、31%、52%,且路径转折少,能较好地得到全局最优值,验证了CLGWO算法的有效性。展开更多
软基水闸底板脱空是水闸在长期服役期间受水流侵蚀等环境因素影响所产生的一种危害极大且难以察觉的病害。由于其病害部位于水下,传统方法难以检测,该研究提出一种基于高斯过程回归(Gaussian process regression,GPR)代理模型和遗传-自...软基水闸底板脱空是水闸在长期服役期间受水流侵蚀等环境因素影响所产生的一种危害极大且难以察觉的病害。由于其病害部位于水下,传统方法难以检测,该研究提出一种基于高斯过程回归(Gaussian process regression,GPR)代理模型和遗传-自适应惯性权重粒子群(genetic algorithm-adaptive particle swarm optimization,GA-APSO)混合优化算法的水闸底板脱空动力学反演方法,用于检测软基水闸底板脱空。首先,构建表征软基水闸底板脱空参数和水闸结构模态参数之间非线性关系的GPR代理模型;其次,基于GPR代理模型与水闸实测模态参数建立脱空反演的最优化数学模型,将反演问题转化为目标函数最优化求解问题;最后,为提高算法寻优计算的精度,提出一种GA-APSO混合优化算法对目标函数进行脱空反演计算,并提出一种更合理判断反演脱空区域面积和实际脱空区域面积相对误差的指标—面积不重合度。为验证所提方法性能,以一室内软基水闸物理模型为例,对两种不同脱空工况开展研究分析,结果表明,反演脱空区域面积和模型实际设置脱空区域面积的相对误差分别为8.47%和10.77%,相对误差值较小,证明所提方法能有效反演出水闸底板脱空情况,可成为软基水闸底板脱空反演检测的一种新方法。展开更多
针对执行器严重故障下多移动机器人的编队重构控制问题,提出一种基于灰狼优化-鲸鱼优化算法(Grey Wolf Optimizer-Whale Optimization Algorithm,GWO-WOA)的协同编队重构控制策略。设计一种故障观测器以检测多机器人系统中出现的执行器...针对执行器严重故障下多移动机器人的编队重构控制问题,提出一种基于灰狼优化-鲸鱼优化算法(Grey Wolf Optimizer-Whale Optimization Algorithm,GWO-WOA)的协同编队重构控制策略。设计一种故障观测器以检测多机器人系统中出现的执行器严重故障,并使执行器严重故障的机器人离开编队。利用匈牙利算法分配剩余机器人在期望重构编队中的位置,并用GWO-WOA规划出机器人的运动路径。提出编队重构综合控制策略,包括三部分,分别为基于一致性的编队保持控制、基于势能函数的避碰控制和基于比例积分的跟踪控制器,使多机器人在无碰撞的情形下实现了重构编队。仿真实验结果表明,所提出的编队重构控制策略能够实时监测出故障机器人,并且在形成期望重构编队的同时防止相互碰撞。展开更多
鉴于实际生产中工人的能力和加工效率存在差异,本文提出了考虑工人差异性和刀具限制的多资源约束并行机分批调度问题,以最小化最大完工时间、最小化交付时间偏差为优化目标,构建了工人熟练度、刀具资源约束的混合整数线性规划模型,研究...鉴于实际生产中工人的能力和加工效率存在差异,本文提出了考虑工人差异性和刀具限制的多资源约束并行机分批调度问题,以最小化最大完工时间、最小化交付时间偏差为优化目标,构建了工人熟练度、刀具资源约束的混合整数线性规划模型,研究子批数量和大小、机器分配、工人分配、子批加工顺序之间的耦合关系,设计了一种改进的多目标混合灰狼-鲸鱼群算法(manyobjective hybrid grey wolf optimizer and whale swarm algorithm,MO-HGWSA).根据模型特点,设计了一种两阶段编码和解码方案表示问题的可行解;利用多种引导策略提高算法的进化效率;设计了局部搜索策略,增强算法的局部搜索能力.最后引入案例验证算法的有效性,结果表明本文所提算法在收敛性、分布性和解集支配关系方面均优于对比算法.展开更多
文摘针对执行器严重故障下多移动机器人的编队重构控制问题,提出一种基于灰狼优化-鲸鱼优化算法(Grey Wolf Optimizer-Whale Optimization Algorithm,GWO-WOA)的协同编队重构控制策略。设计一种故障观测器以检测多机器人系统中出现的执行器严重故障,并使执行器严重故障的机器人离开编队。利用匈牙利算法分配剩余机器人在期望重构编队中的位置,并用GWO-WOA规划出机器人的运动路径。提出编队重构综合控制策略,包括三部分,分别为基于一致性的编队保持控制、基于势能函数的避碰控制和基于比例积分的跟踪控制器,使多机器人在无碰撞的情形下实现了重构编队。仿真实验结果表明,所提出的编队重构控制策略能够实时监测出故障机器人,并且在形成期望重构编队的同时防止相互碰撞。
文摘鉴于实际生产中工人的能力和加工效率存在差异,本文提出了考虑工人差异性和刀具限制的多资源约束并行机分批调度问题,以最小化最大完工时间、最小化交付时间偏差为优化目标,构建了工人熟练度、刀具资源约束的混合整数线性规划模型,研究子批数量和大小、机器分配、工人分配、子批加工顺序之间的耦合关系,设计了一种改进的多目标混合灰狼-鲸鱼群算法(manyobjective hybrid grey wolf optimizer and whale swarm algorithm,MO-HGWSA).根据模型特点,设计了一种两阶段编码和解码方案表示问题的可行解;利用多种引导策略提高算法的进化效率;设计了局部搜索策略,增强算法的局部搜索能力.最后引入案例验证算法的有效性,结果表明本文所提算法在收敛性、分布性和解集支配关系方面均优于对比算法.