为解决光伏序列的强噪音干扰以及单一模型在光伏功率预测方面精度偏低和泛化性较差的问题,提出了一种基于特征优化和混合改进灰狼算法优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的短期光伏功率预测方法。首...为解决光伏序列的强噪音干扰以及单一模型在光伏功率预测方面精度偏低和泛化性较差的问题,提出了一种基于特征优化和混合改进灰狼算法优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的短期光伏功率预测方法。首先,运用互信息算法进行输入数据的变量选择,以消除冗余变量。其次,通过互补集合经验模态分解和改进的小波阈值算法对筛选后的数据进行特征重构,旨在降低数据中的噪声干扰并完成输入变量的特征优化。随后,结合改进的Tent混沌映射、非线性递减因子、动态权重策略和差分进化算法对标准灰狼优化算法进行混合优化,以确定双向长短期记忆神经网络的最优超参数组合,并引入注意力机制以挖掘数据中的关键时序信息,最终构建出一种新型的短期光伏功率预测模型。仿真实验表明,相较于最小二乘支持向量机、长短期记忆网络和双向长短期记忆网络,所提模型在晴天、多云、阴天和降雨等不同工况下的均方根误差平均分别降低了12.45%、7.95%和5.37%,显示出优秀的预测性能、良好的泛化能力和潜在的工程应用价值。展开更多
在经典车辆路径问题(vehicle routing problem,VRP)的基础上增加了客户要求访问的时间窗约束,以车辆行驶路径最短和使用车辆数最小为目标,建立了不确定车辆数的多约束车辆路径问题(multi-constraint vehicle routing problem with varia...在经典车辆路径问题(vehicle routing problem,VRP)的基础上增加了客户要求访问的时间窗约束,以车辆行驶路径最短和使用车辆数最小为目标,建立了不确定车辆数的多约束车辆路径问题(multi-constraint vehicle routing problem with variable fleets,MVRP-VF)的数学模型。引入遗传算法的交叉操作以及大规模邻域搜索算法中的破坏算子和修复算子,重新定义了基本灰狼优化算法(grey wolf optimizer,GWO)的操作算子,优化了GWO的寻优机制,从而设计出用于求解MVRP-VF问题的混合灰狼优化算法(hybrid grey wolf optimizer,HGWO)。通过仿真实验与其他参考文献中的算法求解结果进行比较,验证了HGWO求解该类问题的有效性与可行性。展开更多
针对齿轮箱多类故障信号非线性、不确定性难以进行有效识别的问题,提出了一种混合灰狼优化算法(Hybrid Grey Wolf Optimizer,HGWO)优化多分类支持向量机(Multi-class Support Vector Machine,MSVM)的齿轮箱故障诊断方法。首先利用小波...针对齿轮箱多类故障信号非线性、不确定性难以进行有效识别的问题,提出了一种混合灰狼优化算法(Hybrid Grey Wolf Optimizer,HGWO)优化多分类支持向量机(Multi-class Support Vector Machine,MSVM)的齿轮箱故障诊断方法。首先利用小波包对齿轮箱故障信号进行降噪处理,并通过信号中各频带的能量,提取能量特征值,再将获取的特征值输入优化后的MSVM模型进行故障模式的识别。实验结果表明,相对于传统的诊断模型,基于HGWO-MSVM的齿轮箱故障诊断模型能够更有效地诊断齿轮箱的实际运行状态,提高识别效率和精度。展开更多
文摘为解决光伏序列的强噪音干扰以及单一模型在光伏功率预测方面精度偏低和泛化性较差的问题,提出了一种基于特征优化和混合改进灰狼算法优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的短期光伏功率预测方法。首先,运用互信息算法进行输入数据的变量选择,以消除冗余变量。其次,通过互补集合经验模态分解和改进的小波阈值算法对筛选后的数据进行特征重构,旨在降低数据中的噪声干扰并完成输入变量的特征优化。随后,结合改进的Tent混沌映射、非线性递减因子、动态权重策略和差分进化算法对标准灰狼优化算法进行混合优化,以确定双向长短期记忆神经网络的最优超参数组合,并引入注意力机制以挖掘数据中的关键时序信息,最终构建出一种新型的短期光伏功率预测模型。仿真实验表明,相较于最小二乘支持向量机、长短期记忆网络和双向长短期记忆网络,所提模型在晴天、多云、阴天和降雨等不同工况下的均方根误差平均分别降低了12.45%、7.95%和5.37%,显示出优秀的预测性能、良好的泛化能力和潜在的工程应用价值。
文摘在经典车辆路径问题(vehicle routing problem,VRP)的基础上增加了客户要求访问的时间窗约束,以车辆行驶路径最短和使用车辆数最小为目标,建立了不确定车辆数的多约束车辆路径问题(multi-constraint vehicle routing problem with variable fleets,MVRP-VF)的数学模型。引入遗传算法的交叉操作以及大规模邻域搜索算法中的破坏算子和修复算子,重新定义了基本灰狼优化算法(grey wolf optimizer,GWO)的操作算子,优化了GWO的寻优机制,从而设计出用于求解MVRP-VF问题的混合灰狼优化算法(hybrid grey wolf optimizer,HGWO)。通过仿真实验与其他参考文献中的算法求解结果进行比较,验证了HGWO求解该类问题的有效性与可行性。
文摘针对齿轮箱多类故障信号非线性、不确定性难以进行有效识别的问题,提出了一种混合灰狼优化算法(Hybrid Grey Wolf Optimizer,HGWO)优化多分类支持向量机(Multi-class Support Vector Machine,MSVM)的齿轮箱故障诊断方法。首先利用小波包对齿轮箱故障信号进行降噪处理,并通过信号中各频带的能量,提取能量特征值,再将获取的特征值输入优化后的MSVM模型进行故障模式的识别。实验结果表明,相对于传统的诊断模型,基于HGWO-MSVM的齿轮箱故障诊断模型能够更有效地诊断齿轮箱的实际运行状态,提高识别效率和精度。