期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于混合深度模型和密度估计的电子式电压互感器测量误差区间预测
1
作者 李振华 崔九喜 +4 位作者 卢和平 周峰 刁赢龙 魏寅孔 李振兴 《电网技术》 2025年第9期3900-3909,I0126-I0131,共16页
作为电力系统中的基本量测设备,电子式电压互感器(electronic voltage transformers,EVTs)的测量精度对系统的监控、控制与安全运行至关重要。为此,提出了一种基于混合深度模型和自适应窗宽概率密度估计的互感器测量误差区间预测模型。... 作为电力系统中的基本量测设备,电子式电压互感器(electronic voltage transformers,EVTs)的测量精度对系统的监控、控制与安全运行至关重要。为此,提出了一种基于混合深度模型和自适应窗宽概率密度估计的互感器测量误差区间预测模型。首先,通过改进的集合经验模态分解对历史比差特征进行数据前处理。其次,提出了基于数据驱动的双向时序卷积网络、双向门控循环单元和多头注意力机制混合深度学习模型,对分解后的不同模态分量进行预测。此外,引入自适应选择最优窗宽的核密度概率估计方法,拟合预测结果构建不同置信度下的预测区间,并比较不同核函数对于预测区间的影响。通过算例分析,验证了所提模型在提高确定性预测和概率区间预测准确度方面的有效性。 展开更多
关键词 电压互感器 测量误差预测 混合深度模型 概率密度函数 置信区间
在线阅读 下载PDF
基于深度迁移混合模型的刀具磨损状态监测方法 被引量:1
2
作者 唐祎晖 王宇钢 +2 位作者 杨历夏 张阴硕 穆俊珍 《机床与液压》 北大核心 2024年第20期63-71,共9页
为提高刀具磨损的监测精度和效率,针对加工过程中刀具磨损状态监测出现的数据不均衡问题,提出一种基于深度迁移混合模型的刀具磨损状态监测方法。通过混合类平衡正则化、数据增强与批量归一化技术对经过图像编码的数据集进行图像预处理... 为提高刀具磨损的监测精度和效率,针对加工过程中刀具磨损状态监测出现的数据不均衡问题,提出一种基于深度迁移混合模型的刀具磨损状态监测方法。通过混合类平衡正则化、数据增强与批量归一化技术对经过图像编码的数据集进行图像预处理,再利用ResNet32残差神经网络从图像中自适应地提取相关重要特征,然后采用ResNet32残差神经网络作为分类器进行两阶段训练,采用标签感知平滑优化损失函数,通过参数迁移获得最优分类模型。结果表明:所提方法有效改善了刀具磨损监测数据不均衡的问题,与目前的基于深度学习的刀具磨损监测方法相比,在准确率和计算效率方面均有较大提高。 展开更多
关键词 刀具磨损状态监测 深度迁移混合模型 数据增强 参数迁移
在线阅读 下载PDF
基于混合深度学习的压气机喘振快速诊断及自抗扰控制方法 被引量:2
3
作者 孙守泰 汤冰 +1 位作者 薛亚丽 孙立 《中国舰船研究》 CSCD 北大核心 2024年第2期187-196,共10页
[目的]为了提升压气机设备安全、稳定运行的水平,提出一种基于混合深度学习参数辨识的喘振状态快速诊断方法,以及一种用于实现压气机退喘的自抗扰控制策略。[方法]首先,采用长短期记忆神经网络(LSTM)处理压气机参数辨识输入输出数据的... [目的]为了提升压气机设备安全、稳定运行的水平,提出一种基于混合深度学习参数辨识的喘振状态快速诊断方法,以及一种用于实现压气机退喘的自抗扰控制策略。[方法]首先,采用长短期记忆神经网络(LSTM)处理压气机参数辨识输入输出数据的时序关系,并融入高斯过程回归(GPR)的区间概率估计能力,提出一种基于LSTM和GPR结合(LSTM-GPR)的混合深度学习参数辨识算法,进而实现对压气机喘振状态的快速诊断;然后,基于自抗扰控制方法对压气机的节流阀参数进行控制,通过控制量对压气机节流阀参数的补偿,实现对压气机喘振状态的准确控制。[结果]结果表明,混合深度学习参数辨识算法可以实现对压气机临界Greitzer参数的准确辨识,能快速、准确地判断出压气机是否处于喘振状态,并且基于自抗扰控制的控制策略,可以使压气机有效退出喘振状态,相比传统的PID控制和非线性反馈控制等控制方法,所提方法快速、有效,可保证压气机的工作范围。[结论]提出的参数辨识和自抗扰控制方法能够用于压气机的喘振诊断和主动控制,可提升压气机的安全性与稳定性。 展开更多
关键词 压气机 喘振诊断 混合深度学习模型 自抗扰控制
在线阅读 下载PDF
面向认知表现预测的时-空共变混合深度学习模型 被引量:1
4
作者 李晴 徐雪远 邬霞 《自动化学报》 EI CAS CSCD 北大核心 2022年第12期2931-2940,共10页
认知表现预测已经成为当前大脑研究的重要课题.功能磁共振成像技术由于同时具有较好的时间和空间分辨率,有潜力为认知表现预测提供数据支持.为了解决基于功能磁共振成像数据对认知表现进行预测时大脑所具有的时-空共变难刻画问题,提出... 认知表现预测已经成为当前大脑研究的重要课题.功能磁共振成像技术由于同时具有较好的时间和空间分辨率,有潜力为认知表现预测提供数据支持.为了解决基于功能磁共振成像数据对认知表现进行预测时大脑所具有的时-空共变难刻画问题,提出了一种新型基于大脑学习机制的时-空共变混合深度学习模型,即深度稀疏自编码器与循环全连接网络混合模型,以混合神经网络模型的损失函数误差作为认知表现预测能力的评价标准.在人类连接组项目数据集上的实验结果表明,提出的时-空共变混合模型能够有效和稳健地预测认知表现,并提取到与人脑学习、记忆相关的有意义的脑影像特征,从而为认知表现预测提供技术支持. 展开更多
关键词 循环自编码器 时-空共变深度学习模型 混合深度学习模型 认知表现预测 脑启发模型
在线阅读 下载PDF
基于深度自编码器高斯混合模型的窃电行为检测 被引量:15
5
作者 刘钊瑞 高云鹏 +3 位作者 郭建波 李云峰 顾德喜 文一章 《电力系统保护与控制》 EI CSCD 北大核心 2022年第18期92-102,共11页
针对用户侧窃电检测背景下无监督方法的适用性,研究如何解决特征提取和异常检测间的解耦问题,提出基于深度自编码器高斯混合模型(Deep Auto-encoder Gaussian Mixture Model,DAGMM)的用户窃电行为检测方法。首先对数据进行增广迪基-福... 针对用户侧窃电检测背景下无监督方法的适用性,研究如何解决特征提取和异常检测间的解耦问题,提出基于深度自编码器高斯混合模型(Deep Auto-encoder Gaussian Mixture Model,DAGMM)的用户窃电行为检测方法。首先对数据进行增广迪基-福勒检验,获取具有平稳性的用电数据维度。然后通过压缩网络提取数据潜在特征,利用估计网络及高斯混合模型获取反映异常程度的样本能量。最后基于端对端的学习方式对网络参数联合优化以避免模型解耦,将样本能量超过异常阈值的用户识别为窃电,据此实现用户窃电行为检测。实验结果表明,基于深度自编码器高斯混合模型的窃电行为检测方法受窃电样本影响小,提取的特征可有效反映用户用电规律,具有更高的检测准确率。相比于现有方法,其检出率、误检率、F1测度及AUC等评价指标均有显著提高。 展开更多
关键词 窃电行为 无监督学习 深度自编码器高斯混合模型 增广迪基-福勒检验 解耦
在线阅读 下载PDF
深度混合型邻域搜索模型求解CVRP问题
6
作者 杨笑笑 陈智斌 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第6期1023-1033,共11页
邻域搜索算法的关键是邻域结构的选择,但每次迭代搜索的时间较长,缺少在解空间内自主搜索的能力.利用深度强化学习(DRL)模型对邻域搜索算法进行改进,设计了一个新的深度混合型邻域搜索(DHNS)模型来求解带容量的车辆路径问题(CVRP).首先... 邻域搜索算法的关键是邻域结构的选择,但每次迭代搜索的时间较长,缺少在解空间内自主搜索的能力.利用深度强化学习(DRL)模型对邻域搜索算法进行改进,设计了一个新的深度混合型邻域搜索(DHNS)模型来求解带容量的车辆路径问题(CVRP).首先,利用贪婪算法为DRL模型提供初始解;其次,采用指针网络以及Transformer混合编码,利用不同网络的优势,深层次地提取节点特征信息;最后,将修复算子的修复过程转至DHNS模型,自动完成邻域搜索修复解的过程,扩大解空间的自主搜索能力.同时,针对混合编码中复杂传输机制以及解码输出误导性信息的问题,进一步在编码和解码过程中添加AOA(Attention on Attention)机制.AOA负责筛选有价值的信息,过滤不相关或误导性信息,有效刻画了注意力结果和查询之间的相关性,并对节点间的关系进行建模.实验结果表明,DHNS模型在100规模CVRP的优化效果上,优于现有DRL模型和部分传统算法.采用CVRPlib数据集中的算例对该算法的效能进行验证,结果表明,采用DHNS模型能够极大地提升路径问题的优化效能. 展开更多
关键词 深度混合型邻域搜索模型 深度强化学习 混合模型 AOA机制
在线阅读 下载PDF
基于主成分分析和深度自编码高斯混合模型的无监督异常数据检测方法研究 被引量:3
7
作者 刘翔宇 朱诗兵 杨帆 《现代电子技术》 2023年第3期75-80,共6页
在异常数据检测中,由于数据量过大和数据特征维度过高,往往会导致数据标定困难、数据冗余、算法效率降低等。针对以上问题,将主成分分析(PCA)特征选择算法与深度自编码高斯混合模型(DAGMM)相结合,提出一种新的无监督异常数据检测方法PCA... 在异常数据检测中,由于数据量过大和数据特征维度过高,往往会导致数据标定困难、数据冗余、算法效率降低等。针对以上问题,将主成分分析(PCA)特征选择算法与深度自编码高斯混合模型(DAGMM)相结合,提出一种新的无监督异常数据检测方法PCA-DAGMM。该方法首先利用PCA特征选择算法对数据进行预处理,去除对分类效果增益较小的冗余数据,降低运算成本;然后将特征选择后的数据输入到DAGMM模型中进行训练。基于kddcup99数据集和CIC-IDS-2017数据集进行实验,并与多种特征选择算法进行对比,实验结果表明,PCA-DAGMM方法可以有效优化分类器性能,提高分类器训练效率,适用于解决网络流量异常检测问题,F1指数在kddcup99数据集和CIC-IDS-2017数据集上比DAGMM模型分别提高了4.37%和1.06%,训练时间减少了14.43%和8%。 展开更多
关键词 无监督异常数据检测 主成分分析 特征选择 深度自编码高斯混合模型 密度估计 联合训练
在线阅读 下载PDF
基于语谱图提取深度空间注意特征的语音情感识别算法 被引量:6
8
作者 王金华 应娜 +2 位作者 朱辰都 刘兆森 蔡哲栋 《电信科学》 2019年第7期100-108,共9页
从语音情感特征的提取和分类建模出发,以混合卷积神经网络模型为基础,改进特征提取中的Itti模型,包括:增加通过局部二值模式提取的纹理特征;结合听觉敏感度权重提取情感强相关特征。然后提出通过特征约束条件提取标定权重特征的约束挤... 从语音情感特征的提取和分类建模出发,以混合卷积神经网络模型为基础,改进特征提取中的Itti模型,包括:增加通过局部二值模式提取的纹理特征;结合听觉敏感度权重提取情感强相关特征。然后提出通过特征约束条件提取标定权重特征的约束挤压和激励网络结构;最后形成以VGGnet和长短时记忆网络混合网络为基础的微调模型,进一步提升了情感表征能力。通过在自然情感数据库和柏林德语数据库上进行验证,该模型在情感识别率上有明显的上升,相较于基准模型提升了8.43%,同时对比了本模型在自然数据库(FAU-AEC)和柏林数据库(EMO-DB)上的识别效果,实验结果证明模型具有良好的泛化性。 展开更多
关键词 情感识别 深度混合神经网络模型 视觉注意机制
在线阅读 下载PDF
基于特征融合的中文文本情感分析方法 被引量:10
9
作者 赵宏 傅兆阳 王乐 《兰州理工大学学报》 CAS 北大核心 2022年第3期94-102,共9页
针对现有的中文文本情感分析方法不能从句法结构、上下文信息和局部语义特征等方面综合考量文本语义信息的问题,提出一种基于特征融合的中文文本情感分析方法.首先,采用Jieba分词工具对评论文本进行分词和词性标注,并采用词向量训练工具... 针对现有的中文文本情感分析方法不能从句法结构、上下文信息和局部语义特征等方面综合考量文本语义信息的问题,提出一种基于特征融合的中文文本情感分析方法.首先,采用Jieba分词工具对评论文本进行分词和词性标注,并采用词向量训练工具GloVe获取融入词性的预训练词向量;然后,将词向量分别作为引入Self-Attention的BiGRU和TextCNN的输入,使用引入Self-Attention的BiGRU从文本的句法结构和文本的上下文信息两个方面综合提取全局特征,使用TextCNN提取文本的局部语义特征;最后,将全局特征和局部语义特征进行融合,并使用Softmax进行文本情感分类.实验结果表明,本文方法可以有效提高文本情感分析的准确率. 展开更多
关键词 中文文本情感分析 特征融合 特征提取 语义特征 自注意力机制 深度学习混合模型
在线阅读 下载PDF
一种基于EEG信号的抑郁症早期筛查方法
10
作者 任书瑶 宋江玲 张瑞 《计算机科学》 CSCD 北大核心 2023年第S02期999-1004,共6页
抑郁症作为一类常见的、可治愈型的精神类疾病,若能在早期阶段对其进行有效筛查(即早期筛查)并及时采取相应的治疗手段,则可有效控制病情的进一步加重,甚至彻底治愈。传统的抑郁症诊断方法主要是医生通过患者的临床表现及临床检查(主要... 抑郁症作为一类常见的、可治愈型的精神类疾病,若能在早期阶段对其进行有效筛查(即早期筛查)并及时采取相应的治疗手段,则可有效控制病情的进一步加重,甚至彻底治愈。传统的抑郁症诊断方法主要是医生通过患者的临床表现及临床检查(主要为诊断量表)进行综合判断,但诊断结果的准确与否严重依赖于医生的临床经验以及患者的高度配合。同时,由于抑郁症早期患者往往缺乏明显的病症表征,也极大增加了漏诊误诊的可能性。相关研究表明,脑电图(Electroencephalogram,EEG)能够反应受试者的精神状态,这为抑郁症的早期筛查提供了一种有效途径。基于此,以EEG信号为数据源,提出了一种基于EEG信号与深度学习的抑郁症早期筛查方法。首先,结合分段处理、频域转化等方法,对EEG信号进行时-频-空特征序列的提取;其次,基于所提特征序列与深度学习,构建了一种深度混合模型,通过训练模型完成正常人与轻度抑郁症患者的有效识别;最后,在公开数据集MODMA上验证所提方法的可行性与有效性。实验结果显示,早期筛查准确率为82.64%,召回率为78.42%,灵敏度为75.37%。 展开更多
关键词 抑郁症 脑电信号 早期筛查 时-频-空特征序列 深度混合模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部