作为电力系统中的基本量测设备,电子式电压互感器(electronic voltage transformers,EVTs)的测量精度对系统的监控、控制与安全运行至关重要。为此,提出了一种基于混合深度模型和自适应窗宽概率密度估计的互感器测量误差区间预测模型。...作为电力系统中的基本量测设备,电子式电压互感器(electronic voltage transformers,EVTs)的测量精度对系统的监控、控制与安全运行至关重要。为此,提出了一种基于混合深度模型和自适应窗宽概率密度估计的互感器测量误差区间预测模型。首先,通过改进的集合经验模态分解对历史比差特征进行数据前处理。其次,提出了基于数据驱动的双向时序卷积网络、双向门控循环单元和多头注意力机制混合深度学习模型,对分解后的不同模态分量进行预测。此外,引入自适应选择最优窗宽的核密度概率估计方法,拟合预测结果构建不同置信度下的预测区间,并比较不同核函数对于预测区间的影响。通过算例分析,验证了所提模型在提高确定性预测和概率区间预测准确度方面的有效性。展开更多
邻域搜索算法的关键是邻域结构的选择,但每次迭代搜索的时间较长,缺少在解空间内自主搜索的能力.利用深度强化学习(DRL)模型对邻域搜索算法进行改进,设计了一个新的深度混合型邻域搜索(DHNS)模型来求解带容量的车辆路径问题(CVRP).首先...邻域搜索算法的关键是邻域结构的选择,但每次迭代搜索的时间较长,缺少在解空间内自主搜索的能力.利用深度强化学习(DRL)模型对邻域搜索算法进行改进,设计了一个新的深度混合型邻域搜索(DHNS)模型来求解带容量的车辆路径问题(CVRP).首先,利用贪婪算法为DRL模型提供初始解;其次,采用指针网络以及Transformer混合编码,利用不同网络的优势,深层次地提取节点特征信息;最后,将修复算子的修复过程转至DHNS模型,自动完成邻域搜索修复解的过程,扩大解空间的自主搜索能力.同时,针对混合编码中复杂传输机制以及解码输出误导性信息的问题,进一步在编码和解码过程中添加AOA(Attention on Attention)机制.AOA负责筛选有价值的信息,过滤不相关或误导性信息,有效刻画了注意力结果和查询之间的相关性,并对节点间的关系进行建模.实验结果表明,DHNS模型在100规模CVRP的优化效果上,优于现有DRL模型和部分传统算法.采用CVRPlib数据集中的算例对该算法的效能进行验证,结果表明,采用DHNS模型能够极大地提升路径问题的优化效能.展开更多
文摘作为电力系统中的基本量测设备,电子式电压互感器(electronic voltage transformers,EVTs)的测量精度对系统的监控、控制与安全运行至关重要。为此,提出了一种基于混合深度模型和自适应窗宽概率密度估计的互感器测量误差区间预测模型。首先,通过改进的集合经验模态分解对历史比差特征进行数据前处理。其次,提出了基于数据驱动的双向时序卷积网络、双向门控循环单元和多头注意力机制混合深度学习模型,对分解后的不同模态分量进行预测。此外,引入自适应选择最优窗宽的核密度概率估计方法,拟合预测结果构建不同置信度下的预测区间,并比较不同核函数对于预测区间的影响。通过算例分析,验证了所提模型在提高确定性预测和概率区间预测准确度方面的有效性。
文摘邻域搜索算法的关键是邻域结构的选择,但每次迭代搜索的时间较长,缺少在解空间内自主搜索的能力.利用深度强化学习(DRL)模型对邻域搜索算法进行改进,设计了一个新的深度混合型邻域搜索(DHNS)模型来求解带容量的车辆路径问题(CVRP).首先,利用贪婪算法为DRL模型提供初始解;其次,采用指针网络以及Transformer混合编码,利用不同网络的优势,深层次地提取节点特征信息;最后,将修复算子的修复过程转至DHNS模型,自动完成邻域搜索修复解的过程,扩大解空间的自主搜索能力.同时,针对混合编码中复杂传输机制以及解码输出误导性信息的问题,进一步在编码和解码过程中添加AOA(Attention on Attention)机制.AOA负责筛选有价值的信息,过滤不相关或误导性信息,有效刻画了注意力结果和查询之间的相关性,并对节点间的关系进行建模.实验结果表明,DHNS模型在100规模CVRP的优化效果上,优于现有DRL模型和部分传统算法.采用CVRPlib数据集中的算例对该算法的效能进行验证,结果表明,采用DHNS模型能够极大地提升路径问题的优化效能.