期刊文献+
共找到153篇文章
< 1 2 8 >
每页显示 20 50 100
基于多尺度特征和增强混合注意力机制的材料SEM图像检索方法
1
作者 曾凡运 廉贺淳 +1 位作者 冯珊珊 王庆梅 《计算机科学》 北大核心 2025年第S1期397-403,共7页
材料SEM图像内容丰富,传统检索方法以及通用领域的检索方法在提取图像特征时容易受图像失真和纹理复杂等多种因素干扰,对关键特征的提取效果不佳.针对常规方法在提取材料SEM图像特征和高效检索方面存在的不足,提出一种基于多尺度特征信... 材料SEM图像内容丰富,传统检索方法以及通用领域的检索方法在提取图像特征时容易受图像失真和纹理复杂等多种因素干扰,对关键特征的提取效果不佳.针对常规方法在提取材料SEM图像特征和高效检索方面存在的不足,提出一种基于多尺度特征信息的融合空洞卷积池化金字塔(ASPP)与增强混合注意力机制(ECBAM)的图像检索方法.该方法使用ConvNeXt网络进行特征提取,ConvNeXt结合膨胀卷积的大尺寸感受野和残差网络提取语义特征的优势,有助于捕捉到更多的细节和复杂纹理,能够更好地提取局部和全局特征;此外,通过引入最新的Mamba模块并将其改为双向架构以融入CBAM,提出了增强型混合注意力机制ECBAM,并将ASPP与ECBAM结合使用,从而稳定高效地对特征进行融合与增强.实验结果表明,在材料SEM图像数据集上,该方法获得了较好的检索效果,与主流检索方法相比平均检索精度提升了1.5%. 展开更多
关键词 微观图像 图像检索 空间金字塔 混合注意力机制 Mamba
在线阅读 下载PDF
基于流序列特征融合与注意力机制的加密流量分类方法
2
作者 李志远 吴安昊 +1 位作者 谭林 卜凡亮 《小型微型计算机系统》 北大核心 2025年第7期1718-1726,共9页
现有加密流量分类方法中对缺少对流量字节本身特征的研究,存在特征冗余、流量表征方式不全面和公开数据集中样本分布不平衡等问题.为解决上述问题,本文提出了一种基于流序列特征融合与注意力机制的加密流量分类方法SFAN(Stream Feature ... 现有加密流量分类方法中对缺少对流量字节本身特征的研究,存在特征冗余、流量表征方式不全面和公开数据集中样本分布不平衡等问题.为解决上述问题,本文提出了一种基于流序列特征融合与注意力机制的加密流量分类方法SFAN(Stream Feature Attention Network).首先,针对特征冗余问题,提出了一个基于混合神经网络的特征提取方法;其次,针对流量表征问题,结合流量原始字节序列与数据包长度序列表征网络流量,再利用注意力机制衡量不同特征的重要性;最后,针对公开数据集中样本分布不平衡的问题,在模型训练层面优化损失函数提高分类精度.利用公开数据集ISCX VPN-nonVPN进行了广泛的实验,SFAN的总体准确率达到98.49%,F1值为98.03%.实验表明,所提出的加密流量分类方法能够有效识别不同应用程序产生的网络流量. 展开更多
关键词 加密流量分类 混合神经网络 多维度特征融合 注意力机制
在线阅读 下载PDF
基于图卷积神经网络−双向门控循环单元及注意力机制的风电功率短期预测模型
3
作者 张光昊 张新燕 王朋凯 《现代电力》 北大核心 2025年第2期201-208,共8页
风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预... 风电功率的准确预测对电力系统的稳定运行意义重大,针对传统组合模型难以充分挖掘变量间潜在依赖性,导致在高维度、大量数据下风电功率预测精度偏低的问题。该文提出一种图卷积神经网络–双向门控循环单元及注意力机制的短期风电功率预测模型。该模型以数值天气预报数据(numerical weather prediction,NWP)和风电功率历史数据作为输入,首先利用皮尔逊相关性分析筛选特征,然后借助残差连接的图卷积神经网络(graph convolutional neural network,GCN)和图学习层挖掘空间特征关系,接着采用双向门控循环单元(bidirectional gated recurrent unit,BiGRU)挖掘历史数据的时序特征,最后引入注意力机制(attentional mechanisms,AM)分配权重,实现风电功率短期预测。以某风电场实测数据为例进行算例分析,实验结果表明,该文方法在单步及多步预测中相比其他方法有更好的预测精度。 展开更多
关键词 风电功率预测 混合深度神经网络 图卷积神经网络 双向门控循环单元 注意力机制
在线阅读 下载PDF
融合非负正弦位置编码和混合注意力机制的情感分析模型 被引量:3
4
作者 郑志超 陈进东 张健 《计算机工程与应用》 CSCD 北大核心 2024年第15期101-110,共10页
针对情感分析任务中,序列模型存在难以获取文本的相对位置信息,且处理较长序列时容易丢失关键信息等问题,提出了一种融合非负正弦位置编码(non-negative sinusoidal position encoding,NSPE)和混合注意力机制(hybrid attention mechanis... 针对情感分析任务中,序列模型存在难以获取文本的相对位置信息,且处理较长序列时容易丢失关键信息等问题,提出了一种融合非负正弦位置编码(non-negative sinusoidal position encoding,NSPE)和混合注意力机制(hybrid attention mechanism,HAM)的双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM)情感分析模型(NSPEHA-BiLSTM)。提出NSPE方法,建立词语的NSPE,为词向量融入相对位置信息;通过Bi-LSTM提取文本特征,并基于HAM分别对特征的全局和局部特征进行赋权,确保关键信息的准确传递;通过全连接层实现文本情感分析。在IMDB数据集中,NSPEA-BiLSTM相较于Bi-LSTM和Text-CNN准确率分别提升了4.67和2.02个百分点,且输入的文本长度越长,模型效果越好,同时验证了NSPE优于其他位置编码。 展开更多
关键词 情感分析 双向长短期记忆网络(Bi-LSTM) 非负正弦位置编码(NSPE) 混合注意力机制(ham)
在线阅读 下载PDF
基于混合注意力机制的滚动轴承故障诊断方法 被引量:3
5
作者 郑玉婕 沈兴全 +2 位作者 周进节 双立 杨启俊 《机床与液压》 北大核心 2024年第22期218-226,共9页
针对普通滚动轴承智能故障诊断方法自适应提取能力弱及故障诊断率低的问题,提出一种基于混合注意力机制模型的滚动轴承故障诊断方法。将一维原始振动信号通过连续小波变换转换为二维特征图像,输入到卷积核注意力机制中以自适应提取故障... 针对普通滚动轴承智能故障诊断方法自适应提取能力弱及故障诊断率低的问题,提出一种基于混合注意力机制模型的滚动轴承故障诊断方法。将一维原始振动信号通过连续小波变换转换为二维特征图像,输入到卷积核注意力机制中以自适应提取故障特征;将提取特征后的图像输入到TDSC模型中,以此量化模型参数、减少每个参数占用内存和对训练好的复杂模型进行压缩,同时提高模型的推理速度和模型训练的准确率;最后,通过2个不同的公开轴承数据集进行实验验证。结果表明:2个数据集故障诊断的最高准确率分别达到了99.99%和99.70%,证明了基于混合注意力机制的轴承故障诊断方法的可行性和优越性。 展开更多
关键词 深度学习 混合注意力机制 卷积神经网络 滚动轴承 故障诊断
在线阅读 下载PDF
基于改进U-Net和混合注意力机制的高质量全尺寸图像隐写方法 被引量:2
6
作者 董云云 朱玉玲 姚绍文 《信息网络安全》 CSCD 北大核心 2024年第7期1050-1061,共12页
图像隐写术是一种将秘密信息隐藏在图像中以防止被发现的技术。当前的图像隐写模型存在图像生成质量差和抗隐写分析能力弱等问题。混合注意力机制不仅可以抑制无意义的通道信息,避免其在含密图像上产生伪影,而且可以根据载体图像中不同... 图像隐写术是一种将秘密信息隐藏在图像中以防止被发现的技术。当前的图像隐写模型存在图像生成质量差和抗隐写分析能力弱等问题。混合注意力机制不仅可以抑制无意义的通道信息,避免其在含密图像上产生伪影,而且可以根据载体图像中不同位置的重要程度分配不同的权重,为秘密信息寻找更合适的隐藏区域。基于上述特点,文章提出了基于U-Net和混合注意力机制的高质量全尺寸图像隐写方法。文章所提方法的模型由编码器、提取器和判别器三个子网组成。编码器采用改进的U-Net结构和混合注意力机制模块进行设计;提取器采用卷积神经网络和混合注意力机制模块进行设计;判别器则用于增强模型的安全性。实验结果表明,该方法能够将尺寸为256×256的彩色秘密图像完全隐藏在同尺寸的彩色载体图像中,在不降低隐写容量的情况下实现高质量的图像隐写。该方法在ImageNet、COCO、DIV2K三个数据集上都展现了良好的视觉质量和隐藏容量,在ImageNet数据集上,PSNR值最高可达40.143dB(载体图像与含密图像)和42.082dB(秘密图像与重构的秘密图像),同时还能够提高模型的抗隐写分析能力。 展开更多
关键词 图像隐写 混合注意力机制 U-Net
在线阅读 下载PDF
基于多尺度混合域注意力机制的笔迹鉴别方法 被引量:1
7
作者 熊武 曹从军 +2 位作者 宋雪芳 邵云龙 王旭升 《计算机应用》 CSCD 北大核心 2024年第7期2225-2232,共8页
针对笔迹鉴别任务中图像大面积是背景、笔迹信息稀疏、关键性信息难以捕捉,并且个人笔迹签名风格具有微小变化而刻意模仿的笔迹高度相似,以及公开的中文笔迹数据集的匮乏的问题,通过对注意力机制和孪生网络模型进行改进,提出一种基于多... 针对笔迹鉴别任务中图像大面积是背景、笔迹信息稀疏、关键性信息难以捕捉,并且个人笔迹签名风格具有微小变化而刻意模仿的笔迹高度相似,以及公开的中文笔迹数据集的匮乏的问题,通过对注意力机制和孪生网络模型进行改进,提出一种基于多尺度混合域注意力机制的笔迹鉴别方法(MMDANet)。首先,在有效通道注意力模块上并联一个最大池化层,并将二维条带池化模块的通道数扩展到三维,将改进的有效通道注意力模块和条带池化模块融合生成混合域模块(MDM),解决了笔迹图像大面积是背景、笔迹信息稀疏、细节特征难以提取的问题;其次,利用PANet特征金字塔进行多尺度提取特征,捕获真伪笔迹间的细微差异,采用孪生网络的对比损失与AM-Softmax损失加权融合进行训练,增加类别间的区分度,解决个人笔迹风格变化和真伪笔迹高度相似的问题;最后自制了总体样本数为8000的中文笔迹数据集(CHD)。所提方法在自制中文数据集CHD上的准确率达到了84.25%,且相较于次优的Two-stage SiamNet方法,所提方法在3个外文数据集Cedar、Bengla和Hindi上准确率分别提升了4.53%、1.02%和1.67%。实验结果表明,MMDANet可以更准确地捕获真伪笔迹的细微差异,完成复杂的笔迹鉴别任务。 展开更多
关键词 笔迹鉴别 孪生网络 注意力机制 多尺度 混合
在线阅读 下载PDF
融入频域增强自注意力机制的BTBFA混合神经网络情感分类模型
8
作者 苏妍嫄 韩翠娟 张亚明 《现代情报》 CSSCI 北大核心 2024年第12期52-63,共12页
[目的/意义]智媒时代基于神经网络模型实现用户情感精准分类,进而深入挖掘海量文本信息潜在价值具有重要意义。[方法/过程]针对现有混合模型层间依赖性强、输出特征重要性差异体现不足等导致的情感分类效果受限问题,基于Stacking集成思... [目的/意义]智媒时代基于神经网络模型实现用户情感精准分类,进而深入挖掘海量文本信息潜在价值具有重要意义。[方法/过程]针对现有混合模型层间依赖性强、输出特征重要性差异体现不足等导致的情感分类效果受限问题,基于Stacking集成思想,提出一种融入频域增强自注意力机制的混合神经网络情感分类模型,通过构建由Bert、TextCNN、BiLSTM组成的并行式特征提取基学习器层与融入频域增强自注意力机制的元学习器层,并与词嵌入层和全连接层相融合,系统挖掘文本深层次语义信息以及局部、全局特征,进而通过权重分配以及离散傅里叶变换提升情感分类效果。[结果/结论]酒店评论数据集上的对比实验与消融实验结果均表明,所提模型情感分类性能与其他模型相比具有显著优势,准确率、召回率、F1值分别达到91.7%、95.3%和93.9%,且随Epoch训练轮数增加,模型情感分类准确性不断提升,损失值不断降低,呈现较强的泛化能力。 展开更多
关键词 情感分类 混合神经网络 Bert-TextCNN-BiLSTM-FAttention Stacking算法 注意力机制 离散傅里叶变换
在线阅读 下载PDF
基于混合模型和注意力机制的智能合约重入漏洞检测方法
9
作者 沈学利 李明峰 《信息安全研究》 CSCD 北大核心 2024年第11期1056-1063,共8页
针对传统智能合约漏洞检测工具和单一深度学习模型对重入漏洞检测效率和精确率低等问题,提出了一种基于混合模型和注意力机制的重入漏洞检测方法(CNN-BiLSTM-ATT).首先,使用单词嵌入模型(Word2vec)进行数据处理并得到特征向量;然后,将... 针对传统智能合约漏洞检测工具和单一深度学习模型对重入漏洞检测效率和精确率低等问题,提出了一种基于混合模型和注意力机制的重入漏洞检测方法(CNN-BiLSTM-ATT).首先,使用单词嵌入模型(Word2vec)进行数据处理并得到特征向量;然后,将处理后的特征向量通过卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)相结合的方法进行特征提取,并通过注意力机制赋予权重以突出关键特征;最后,采用全连接层和Softmax分类器对生成的结果进行分类,实现智能合约的重入漏洞检测.实验结果表明,与传统工具和深度学习方法相比,基于CNN-BiLSTM-ATT的方法在重入漏洞检测方面有较大的提升,准确率、精确率、召回率和F1值分别达到了92.53%,93.27%,91.73%,92.5%,证明该方法的有效性. 展开更多
关键词 智能合约 重入漏洞 漏洞检测 混合模型 注意力机制
在线阅读 下载PDF
基于多尺度注意力机制的实例分割卷积神经网络
10
作者 王改华 林锦衡 程磊 《计算机应用与软件》 北大核心 2024年第3期202-206,232,共6页
在Mask R-CNN实例分割模型的基础上提出一种新的深度学习方法MixedMask。该方法提出并应用两种有效的策略:(1)使用混合尺度的卷积核,提高网络对分辨率较低实例的提取能力;(2)在压缩激励网络的基础上进行改进,解决原网络中降低维度导致... 在Mask R-CNN实例分割模型的基础上提出一种新的深度学习方法MixedMask。该方法提出并应用两种有效的策略:(1)使用混合尺度的卷积核,提高网络对分辨率较低实例的提取能力;(2)在压缩激励网络的基础上进行改进,解决原网络中降低维度导致的通道信息丢失问题。在气球数据集和xBD数据集上进行测试,该算法分别达到了83.46%和58.92%的AP(IoU=50),相比Mask R-CNN模型,分别提升了1.3%和5.9%。 展开更多
关键词 实例分割 注意力机制 混合卷积
在线阅读 下载PDF
基于混合空洞卷积和注意力多尺度网络的残饵密度估计
11
作者 张丽珍 李延天 +3 位作者 李志坚 孟雄栋 张永琪 吴迪 《农业工程学报》 EI CAS CSCD 北大核心 2024年第14期137-145,共9页
及时、准确地估算饵料盘中残留饲料量是提高养殖效益的重要措施。针对虾类养殖场景下残饵检测模型复杂度高、计数精度低的问题,提出了一种基于混合空洞卷积和注意力多尺度网络(hybrid dilated convolution and attention multi-scale ne... 及时、准确地估算饵料盘中残留饲料量是提高养殖效益的重要措施。针对虾类养殖场景下残饵检测模型复杂度高、计数精度低的问题,提出了一种基于混合空洞卷积和注意力多尺度网络(hybrid dilated convolution and attention multi-scale network,HAMNet)的残饵密度估计方法。首先,借鉴MCNN(multi-column convolutional neural network)多列架构的思想设计并行卷积块(parallel convolution block,PCB),使网络在单列架构中提取多种尺度的残饵特征,简化了网络结构并减轻了计算量;同时为了弥补网络结构简化造成残饵特征表示能力略有不足的问题,引入混合空洞卷积块(hybrid dilated convolution block,HDCB)避免信息丢失并增大感受野,增强模型深入挖掘多尺度残饵信息的能力。其次,在网络中嵌入通道注意力机制(channel attention mechanism,CAM),利用通道之间的相互依赖性重新校准有用特征信息的权重,凸显目标与背景的差异性。最后,针对下采样导致密度图质量差的问题,应用可学习的转置卷积恢复特征图细节信息,进而提升模型计数性能。利用饵料盘条件下采集的残饵图像进行了验证,试验结果表明,与基准模型MCNN相比,HAMNet模型的平均绝对误差、均方根误差和计算量分别降低了44.4%、40.8%和13.7%,参数量仅为0.52 MB。与经典密度估计模型CMTL(cascaded multi-task learning)、SANet(scale aggregation network)、CSRNet(congested scene recognition network)相比,该模型在各项性能指标上保持了最佳平衡,明显处于优势。该研究可为人工智能在水产养殖中快速量化残饵提供参考。 展开更多
关键词 水产养殖 模型 残饵 密度估计 并行卷积块 混合空洞卷积 通道注意力机制 转置卷积
在线阅读 下载PDF
采用混合域注意力机制的无人机识别方法 被引量:8
12
作者 薛珊 卫立炜 +1 位作者 顾宸瑜 吕琼莹 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第10期141-150,共10页
针对在城市公园、广场和大型游乐场等公共环境中,雷达和无线电识别无人机易受到电子干扰、图像识别无人机易受到光线和遮挡物干扰的问题,提出了一种经济便捷、不易受到干扰的运用声音和采用通道空间混合域注意力机制多尺度分组卷积网络(... 针对在城市公园、广场和大型游乐场等公共环境中,雷达和无线电识别无人机易受到电子干扰、图像识别无人机易受到光线和遮挡物干扰的问题,提出了一种经济便捷、不易受到干扰的运用声音和采用通道空间混合域注意力机制多尺度分组卷积网络(ECSANet)的无人机识别方法。首先,建立民用的9大类无人机声音数据集,提取数据集的对数梅尔谱图及其动态特征;其次,为了网络参数量少,避免过拟合,设计了基于分组卷积、通道混洗和残差结构的通道混洗多尺度分组卷积网络(MSSGNet);然后,为了能更多、更有效地提取无人机声音特征,设计了通道空间混合域注意力机制模块(ECSA);最后,将ECSA模块插入MSSGNet网络构成改进的通道空间混合域注意力机制的多尺度分组卷积网络(ECSANet),形成新型声音识别无人机的方法。运用设计的ECSANet网络对自建的民用无人机声音数据集和Urbansound8K环境声音数据集进行了声音识别,识别结果表明:与ResNet18、ResNet34、ResNeXt18和MobileNetV2等基准网络相比,MSSGNet网络参数更少,识别准确率更高,达到了95.1%;ECSA模块可以插入多种网络,在不增加很多参数的情况下令网络模型的识别准确率获得提升,在无人机等声音分类任务上具有很好的效果;与MSSGNet网络相比,改进的ECSANet网络识别准确率能达到95.9%,提高了0.8%,表明了该网络在识别小样本无人机方面的优越性和可行性。 展开更多
关键词 无人机 声音识别 对数梅尔谱图 神经网络 混合注意力机制
在线阅读 下载PDF
门限注意力引导的遥感图像语义分割网络
13
作者 王诗瑞 杜康宁 +1 位作者 田澍 曹林 《遥感信息》 北大核心 2025年第3期164-171,共8页
针对多数混合网络因注意力机制的密集点积操作不可避免地产生一定的背景噪声,且在融合卷积神经网络(convolutional neural network,CNN)以及注意力机制所提取的特征信息时常出现特征冗余和不匹配的现象,提出了一种门限注意力引导的混合... 针对多数混合网络因注意力机制的密集点积操作不可避免地产生一定的背景噪声,且在融合卷积神经网络(convolutional neural network,CNN)以及注意力机制所提取的特征信息时常出现特征冗余和不匹配的现象,提出了一种门限注意力引导的混合网络(threshold attention guided network,TAGNet),旨在发挥注意力机制和CNN之间互补的优势。首先,引入了门限注意力机制(threshold attention mechanism,TAM)以捕获全局上下文依赖关系并滤除部分由注意力产生的噪声。此外,针对特征信息之间类型差异的问题,设计了特征指示融合机制(feature lead fusion mechanism,FLFM)以生成一组权重来校准输入特征并指引后续融合过程。该算法在Vaihingen和Potsdam公共数据集上的mIoU得分分别达至80.02%和82.54%。 展开更多
关键词 语义分割 深度学习 注意力机制 门限 混合网络
在线阅读 下载PDF
综合多尺度信息和注意力机制的水下图像增强 被引量:2
14
作者 夏晓华 钟预全 +3 位作者 胡鹏 姚运仕 耿继光 张良奇 《光学精密工程》 EI CAS CSCD 北大核心 2024年第10期1582-1594,共13页
针对水下图像由于水的散射和吸收而存在颜色失真和细节丢失等问题,提出了一种综合多尺度信息和注意力机制的生成对抗网络模型来增强水下图像。首先,为了充分利用和增强图像的局部信息和全局信息,使用局部编码器和全局编码器分别提取图... 针对水下图像由于水的散射和吸收而存在颜色失真和细节丢失等问题,提出了一种综合多尺度信息和注意力机制的生成对抗网络模型来增强水下图像。首先,为了充分利用和增强图像的局部信息和全局信息,使用局部编码器和全局编码器分别提取图像的局部特征和全局特征,并互相融合以实现互补性。接着,设计多尺度混合卷积来捕捉多尺度信息,增加网络对不同尺度特征的适应性。然后,利用注意力机制增加特征提取的准确性,加强网络对高价值特征的关注度。最后,重复使用多尺度混合卷积和注意力机制进一步细化特征后,逐步上采样得到增强图像。与六种经典和最新的方法相比,提出的模型不仅在主观评价中取得了最好的视觉感受,而且在整个测试集上,峰值信噪比(PSNR)、结构相似指数(SSIM)、水下图像质量指标(UIQM)和自然图像质量(NIQE)四种客观评价指标分别取得了22.499,0.789,2.911和4.175的平均分数,均优于六种对比方法,较对比方法中的最优值分别提升0.353,0.002,0.025和0.307,证明提出的模型不仅能够矫正图像颜色失真,而且在恢复图像细节、增加图像对比度和清晰度等方面均有较好的表现,具有良好的应用前景。 展开更多
关键词 水下图像增强 生成对抗网络 编码器 多尺度混合卷积 注意力机制
在线阅读 下载PDF
双注意力密集残差收缩网络的图像去雨算法
15
作者 王震 牛晓伟 《电光与控制》 北大核心 2025年第3期88-93,共6页
针对现有算法对雨纹的清除不彻底并存在背景信息丢失的问题,提出一种双注意力密集残差收缩网络的图像去雨算法。该网络首先通过混合特征补偿模块收集多种尺度信息;在编码阶段使用双注意力密集残差收缩块作为编码器基础编码块,利用软阈... 针对现有算法对雨纹的清除不彻底并存在背景信息丢失的问题,提出一种双注意力密集残差收缩网络的图像去雨算法。该网络首先通过混合特征补偿模块收集多种尺度信息;在编码阶段使用双注意力密集残差收缩块作为编码器基础编码块,利用软阈值网络将收集的特征信息中的无用信息置零并添加空间,利用通道双注意力标注雨纹的位置信息;在解码阶段将前面不同阶段的特征信息进行聚合,通过scSE注意力机制进行空间、通道两方面激励,压缩特征信息传入解码器进行解码,最终输出去雨图像。在公开数据集Rain100H、Rain100L、Rain800和Rain12上进行实验,以Rain100H为例与其他算法相比,峰值信噪比(PSNR)提高了1.07~7.45 dB,结构相似度提高了0.021~0.139。 展开更多
关键词 图像去雨 混合特征补偿 注意力机制 注意力密集残差收缩网络
在线阅读 下载PDF
结合空洞卷积与注意力机制的道路提取方法 被引量:1
16
作者 余果 李大成 杨毅 《中国空间科学技术(中英文)》 CSCD 北大核心 2024年第5期175-185,共11页
针对高分辨率影像中道路情况复杂,存在细小道路和被建筑、阴影等隔断道路,导致道路提取精度不高的问题,提出一种结合空洞卷积单元和并行注意力机制模块的改进模型AP-LinkNet。该模型是通过在下采样编码过程中扩大感受野和深层次关注道... 针对高分辨率影像中道路情况复杂,存在细小道路和被建筑、阴影等隔断道路,导致道路提取精度不高的问题,提出一种结合空洞卷积单元和并行注意力机制模块的改进模型AP-LinkNet。该模型是通过在下采样编码过程中扩大感受野和深层次关注道路特征以达到更高的细节道路提取精度。其中空洞卷积模块在扩大感受野的同时不改变空间上像素之间的关系,并行注意力机制提高输入影像采样过程中对通道和空间信息的关注度,并加权赋值给解码步骤的反卷积特征。结合两种机制的特点,减少复杂道路背景的噪声扰乱性以及提高道路提取模型的整体精度。与DeepLabV3+、U-Net、LinkNet和D-LinkNet模型做对比分析,AP-LinkNet模型在DeepGlobe数据集上道路提取的F_(1)分数和IOU评价指标为80.69%和78.65%,其中F_(1)分数分别高出对比模型11.71%、5.24%、3.97%和3.58%。结果表明模型精确度和鲁棒性更高,对于高分影像狭窄、被遮挡等复杂道路细节提取效果好。 展开更多
关键词 深度学习 空洞卷积 并行注意力机制 混合损失函数 卷积神经网络
在线阅读 下载PDF
混合扩张卷积和注意力机制的路面裂缝检测 被引量:6
17
作者 瞿中 李明 《计算机工程与设计》 北大核心 2023年第8期2425-2431,共7页
针对复杂背景下路面裂缝检测困难的问题,提出一种基于混合扩张卷积和空间-通道注意力机制的路面裂缝检测算法。基于改进的U-Net网络,在编码阶段,使用空间-通道注意力机制增强裂缝特征,抑制非裂缝特征;在网络中间部分,使用混合扩张卷积... 针对复杂背景下路面裂缝检测困难的问题,提出一种基于混合扩张卷积和空间-通道注意力机制的路面裂缝检测算法。基于改进的U-Net网络,在编码阶段,使用空间-通道注意力机制增强裂缝特征,抑制非裂缝特征;在网络中间部分,使用混合扩张卷积实现在不增加额外模块的前提下增大网络的感受野;在解码阶段,融合多层次和多尺度特征使最终预测结果更接近路面真实情况。实验结果表明,所提算法能够快速准确地对路面裂缝进行检测,具有较强的鲁棒性。 展开更多
关键词 裂缝检测 深度学习 卷积神经网络 编码-解码结构 混合扩张卷积 空间-通道注意力机制 多尺度特征融合
在线阅读 下载PDF
基于卷积神经网络和混合注意力机制的书标检测算法 被引量:2
18
作者 张岩 赵蒙蒙 +1 位作者 孙英伟 常艳康 《山东科技大学学报(自然科学版)》 CAS 北大核心 2023年第3期94-102,共9页
为实现图书馆中机器人智能排架,提出一种基于卷积神经网络和混合注意力机制的书标检测模型。将DenseNet121引入YOLOv4以提高特征和梯度之间的传递效率,利用SPDC模块实现局部和全局特征融合,进而通过通道和空间混合注意力提高模型的特征... 为实现图书馆中机器人智能排架,提出一种基于卷积神经网络和混合注意力机制的书标检测模型。将DenseNet121引入YOLOv4以提高特征和梯度之间的传递效率,利用SPDC模块实现局部和全局特征融合,进而通过通道和空间混合注意力提高模型的特征表征能力。实验结果表明,模型的平均准确率、整体性能、参数量和模型大小均优于对比方法,且易于部署到嵌入式设备中实现在线检测,从而提高图书乱架治理的智能化水平。 展开更多
关键词 卷积神经网络 混合注意力机制 书标 目标检测 智慧图书馆
在线阅读 下载PDF
一种基于自注意力机制的人脸图像补全算法
19
作者 杨博文 何衡湘 邓洪峰 《计算机应用与软件》 北大核心 2024年第8期266-270,318,共6页
针对目前深度学习的方法在大面积信息缺失的人脸图像进行补全应用中,补全结果出现纹理细节模糊、结构变形扭曲等问题,提出一种基于自注意力机制的图像补全算法。该算法将待补全的图像输入基于跳跃连接的粗生成网络,得到初步修复;将初步... 针对目前深度学习的方法在大面积信息缺失的人脸图像进行补全应用中,补全结果出现纹理细节模糊、结构变形扭曲等问题,提出一种基于自注意力机制的图像补全算法。该算法将待补全的图像输入基于跳跃连接的粗生成网络,得到初步修复;将初步结果输入自注意力感知分支和混合空洞卷积分支共同编码,再通过解码得到生成结果;由双判别器完成判别优化工作。通过人脸图像CelebA-HQ数据集进行实验与测试,所提方法的补全结果在客观和主观评价方面,优于deepfill和PLC两种算法。 展开更多
关键词 图像补全 生成对抗网络 跳跃连接 注意力机制 混合空洞卷积
在线阅读 下载PDF
残差混合注意力结合骨骼图卷积多人姿态识别 被引量:2
20
作者 陈斌 樊飞燕 陆天易 《南京师大学报(自然科学版)》 CAS 北大核心 2024年第4期106-117,共12页
多人姿态识别研究起步晚,成熟度低,复杂性高,因此网络深度也随之加深,梯度消失问题也随之加剧,网络性能也随之衰减,由此造成识别精度差,识别效率低等共性问题.为解决这些问题,本文提出了一种残差混合注意力结合骨骼图卷积多人姿态识别模... 多人姿态识别研究起步晚,成熟度低,复杂性高,因此网络深度也随之加深,梯度消失问题也随之加剧,网络性能也随之衰减,由此造成识别精度差,识别效率低等共性问题.为解决这些问题,本文提出了一种残差混合注意力结合骨骼图卷积多人姿态识别模型.通过自顶向下的研究路径,运用预处理干预方式对多人体图像进行检测并对单人体坐标定位及框选标定,生成骨骼关键点架构图,借助残差块对网络结构进行改进以抑制梯度弥散,加载混合注意力机制对模型赋能增效.在MPII及MSCOCO2017两个数据集上对本文提出的模型进行了验证,结果显示该模型对多人姿态识别效果较好,在两个数据集上分布稳定,差异微小.同时,将本文模型与对本领域各类重要文献中记载模型综合能力进行了比较,结果表明在各项精细指标上本模型都有一定程度提升,稳定性较好,分布较为均匀.本文提出的多人姿态识别模型在跨数据集基础上表现出较好的识别效果和效率,为多人姿态识别的研究增添了动力. 展开更多
关键词 多人姿态识别 残差 混合注意力机制 骨骼关键点图 图卷积
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部